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Abstract— This study uses hyperparameter optimization
using Randomized Search Cross-Validation
(RandomizedSearchCV) for Artificial Neural Networks (ANN)
in mental health classification based on lifestyle factors. The
study analyzed the relationship between various lifestyle
parameters, including academic pressure, financial pressure,
eating habits, sleep duration, family history of mental illness,
and gender and depression outcomes. Using a dataset consisting
of 27,898 samples, this study implemented mutual information
feature selection and compared the performance of the basic
ANN with the optimized hyperparameters. The results showed
that fine-tuning the hyperparameters led to a noticeable jump
in accuracy, going from 76 % to 77%. It turns out that academic
pressure is the most significant factor, with a mutual
information score of approximately 0.120964. It slightly
surpasses financial pressure, which only scores around
0.069553. This research provides insight into the effectiveness of
automatic hyperparameter optimization for mental health
classification tasks and its contribution to the development of
more accurate mental health screening systems.

Keywords—  Artificial Neural Network, Hyperparameter
Optimization, Lifestyle Factors, Mental Health Classification,
Mutual Information, Randomized Search

I. INTRODUCTION

Mental health disorders have emerged as one of the most
pressing public health challenges globally, with depression
affecting over 280 million people worldwide according to the
World Health Organization[1]. The COVID-19 pandemic has
further intensified this crisis, leading to unprecedented
increases in depression and anxiety symptoms across
populations[2]. Traditional diagnostic approaches, while
clinically established, face significant limitations including
subjective variability, resource intensity, and accessibility
constraints, particularly in underserved regions where mental
health professionals are scarce [3].

Recent advances in computational psychiatry have
demonstrated the transformative potential of machine learning
approaches in mental health assessment. Comprehensive
studies have shown that automated systems can achieve
classification accuracies exceeding 80% across various mental
health prediction tasks [4]. The integration of artificial
intelligence in psychiatric applications has been validated

979-8-3503-9306-4/25/$31.00 ©2025 IEEE

through deep learning implementations, establishing robust
foundations for automated screening systems [5]. These
technological innovations address critical gaps by providing
objective, scalable, and consistent evaluation mechanisms that
complement rather than replace clinical expertise.

Among available machine learning algorithms, Artificial
Neural Networks (ANN) demonstrate superior capabilities for
mental health classification due to their ability to capture
complex non-linear relationships inherent in psychological
data [6]. Unlike traditional methods such as Support Vector
Machines or logistic regression, ANN can automatically learn
hierarchical feature representations and handle continuous
learning scenarios effectively [7]. The gradient-based
optimization in ANN provides superior adaptability to data
variations and more precise hyperparameter control compared
to ensemble methods like Random Forest [8].

However, systematic reviews reveal a critical
methodological gap in current mental health machine learning
research: approximately 73% of studies rely on default
parameter settings, leading to suboptimal performance and
compromised validity [9]. Inadequate hyperparameter
optimization significantly impacts model generalizability,
with performance drops of up to 15% documented when
models are tested on independent datasets [10]. This
methodological rigor gap creates barriers to translating
promising research findings into practical clinical
applications.

Contemporary research has increasingly focused on
hyperparameter optimization techniques to address these
limitations. = Randomized search  approaches have
demonstrated superior efficiency compared to traditional grid
search methods while maintaining comparable performance
[11]. Recent studies have shown significant improvements in
depression  prediction accuracy through systematic
hyperparameter tuning across various machine learning
algorithms [12]. The convergence of optimization theory and
mental health applications establishes the foundation for
developing clinically viable automated screening systems.

Lifestyle factors have emerged as significant predictors in
mental health classification, with studies demonstrating their
effectiveness in automated screening systems [13]. Academic



and financial stress have been identified as primary drivers of
mental health issues among young adults, making them
crucial features for prediction models [14]. The integration of
lifestyle-based features with optimized machine learning
models represents a promising approach for developing
accessible mental health screening tools.

This research addresses the documented methodological
gaps by systematically applying Randomized Search Cross-
Validation for ANN hyperparameter optimization in lifestyle-
based mental health classification. Our contributions include:
(1) quantifying tangible performance improvements through
rigorous hyperparameter optimization, achieving accuracy
improvements from 76.02% to 77.77%; (2) validating lifestyle
factors as depression predictors through Mutual Information
analysis; and (3) providing a transparent, replicable
methodology that bridges the gap between theoretical
machine learning capabilities and practical clinical
implementation[15]. This investigation advances
understanding of systematic hyperparameter optimization
effectiveness in mental health classification, offering a
methodological framework for developing reliable automated
screening systems.

II. RELATED RESEARCH

Recent developments in computational psychiatry have
demonstrated significant potential for machine learning
approaches in mental health assessment. Durstewitz et al [16]
conducted a comprehensive review of deep neural networks
in psychiatry, analyzing neuroimaging data and biomarkers
for mental disorder diagnosis with accuracies reaching 85-
90%. However, their focus on neuroimaging data limited
comprehensive evaluation of lifestyle-based factors that are
more accessible for large-scale screening applications.
Similarly, Koeppe et al [17] developed an explainable Al
framework using physics-informed neural networks with
Bayesian optimization, showing 40% improvement in model
interpretability while maintaining prediction accuracy, but
was constrained by small dataset size (n=2,847) and limited
demographic validation.

Systematic literature reviews have revealed critical gaps
in current methodological approaches. Ningrum and
Ismawardi [18] analyzed 150 studies from 2018-2024,
finding that hyperparameter optimization significantly affects
model performance, with random search and Bayesian
optimization providing 3-7% accuracy improvements over
default parameters. However, their review revealed that 68%
of studies failed to report hyperparameter optimization
details, and only 23% provided reproducible frameworks.
Recent implementations by Saelan and Subekti [19]
demonstrated that combining mutual information feature
selection with randomized search hyperparameter tuning can
improve accuracy by up to 12%, though their work lacked
validation in  healthcare contexts where clinical
interpretability requirements differ significantly from
commercial applications.

Mental health-specific  applications have shown
promising results but with notable limitations. Rahma et al.
[20] developed an adolescent mental health prediction system
using school environment factors, achieving 79.2% accuracy
with ANN hyperparameter optimization and identifying
academic stress and financial stress as strongest predictors
(mutual information scores of 0.085 and 0.072). Despite good

performance, their research was limited by narrow
demographic focus and lack of long-term validation. Based
on comprehensive literature analysis, several critical
limitations emerge: methodological inconsistency with 73%
of studies wusing default hyperparameters, limited
generalizability due to small datasets, inadequate
reproducibility lacking methodological detail, insufficient
clinical validation without comparison to established
screening tools, and feature selection bias limiting clinical
utility [21]. These identified gaps underscore the critical need
for systematic, large-scale studies that employ rigorous
hyperparameter ~ optimization, comprehensive feature
analysis, and clinically relevant validation frameworks—
precisely the research objectives addressed in this
investigation.

III. METHOD

This study employed a dataset comprising 27,898 samples
with six lifestyle-related predictor variables: Gender,
Academic Stress, Sleep Duration, Dietary Habits, Financial
Stress, and Family History of Mental Illness, with Depression
as the binary target variable for classification. The data
preprocessing stage involved several critical steps: (1)
systematic removal of duplicate records to prevent data
leakage and bias, (2) handling missing values through mean
imputation for numerical variables and mode imputation for
categorical variables, (3) categorical encoding using
appropriate numerical representation, and (4) feature scaling
using StandardScaler to normalize input variable ranges.

The dataset was systematically divided using Stratified
Train-Test Split approach to ensure representative distribution
of the target variable across both training and testing sets. The
data split followed an 80:20 ratio, where 22,318 samples
(80%) were allocated for training purposes, including
hyperparameter optimization and model training, while 5,580
samples (20%) were reserved exclusively for final model
evaluation. This stratified splitting approach ensures that both
training and testing sets maintain the same proportion of
positive and negative depression cases as the original dataset,
preventing bias from uneven class distribution. The training
set was further subdivided during k-fold cross-validation
(k=5) procedures for robust hyperparameter optimization,
ensuring no information leakage from the final test set.

A. Feature Selection Using Mutual Information

Mutual Information analysis was implemented to measure
the statistical dependency between each lifestyle factor and
depression outcome. This information theory measure
provides objective assessment of feature relevance by
quantifying the amount of information one variable contains
about another [22]. The mathematical formulation of Mutual
Information is expressed as:

MIX;Y) = ernyeyp(x'y)log( p(xy) ) )

p()p(¥)
Where :
X : lifestyle factors
y : depression status
p(x,y) : the joint probability of feature and target

occurring simultaneously



p(x) and p(y) : marginal probability of each variable

independently

A higher MI score indicates a stronger statistical
dependency between the feature and target variable, indicating
greater predictive value for the classification task. The mutual
information scores for all features are presented in Table I,
with corresponding feature importance visualization shown in
Figure 2.

B. Artificial Neural Network Architecture

The basic ANN was implemented using Multi-Layer
Perceptron (MLP) architecture, representing a feedforward
neural network design suitable for classification tasks. The
network structure consists of: (1) an input layer with six
neurons corresponding to preprocessed lifestyle features, (2)
one or more hidden layers with variable configurations
determined through hyperparameter tuning, and (3) an output
layer with two neurons for binary depression classification.
The forward propagation process in neural networks follows
the mathematical representation [23]:

2 =wlgl-D 4 pDq = o(z(’)) 2)
Where :
z! : weighted inputs as a linear combination of
inputs and weights
W' and p® : parameters that can be learned and
adjusted during training
a® : activation output after activation function

application

C. Hyperparameter Tuning with Randomized Search

Randomized Search Cross-Validation was employed to
systematically optimize neural network hyperparameters,
overcoming computational challenges associated with
exhaustive parameter exploration by randomly sampling from
predefined parameter distributions [24]. The optimization
process targets five critical hyperparameters: (1) Hidden
Layer Sizes with options [(50,), (100,), (50,25), (100,50),
(20,10)], (2) activation functions ['relu’, 'tanh', 'logistic'], (3)
solver algorithms ['adam', 'sgd', 'lbfgs'], (4) learning rate
schedules ['constant', 'invscaling', 'adaptive'], and (5) alpha
regularization parameter following log-uniform distribution
[0.0001, 0.01]. The objective function for random search
optimization is formulated as [25]:

0" = argmingee %Z{{:l L(fo (Xeruin): Yerain €)

Where:

6* : optimal hyperparameter configuration for mental health
classification

O :search space containing all combinations of architecture,
activation function, optimizer, learning rate

k :number of cross-validation folds (5 or 10) for robust
performance estimation

L :loss function (binary cross entropy) for depression
classification

fo : Neural network model that converts lifestyle features
into predicted depression probabilities
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Fig. 1. Depression Prediction Workflow with Optimized ANN

The comprehensive methodology workflow begins with
loading a dataset of 27,898 mental health samples, followed
by systematic data cleaning that handles missing values
through parallel strategies of NaN replacement and
imputation. The preprocessing phase executes feature-target
separation to separate lifestyle variables from depression
outcomes, remove uninformative ID fields, and encode
categorical features for numerical representation. After feature
scaling and train-test separation, the RandomizedSearchCV
core implementation explores the hyperparameter space
through parallel paths of optimal ANN model identification
and parameter space exploration by random hyperparameter
sampling and cross-validation. The evaluation phase results in
a comprehensive model assessment using multiple metrics
(accuracy, precision, recall, F1-score) and generates analytical
outputs including visualization plots, mutual information-
based feature importance analysis, accuracy scores, and
detailed classification reports, ultimately identifying the best
parameters for optimal model configuration and ensuring
research productivity [26]. The hyperparameter search space
and optimal configurations are detailed in Table II.

D. Model Evaluation and Performance Assessment

The performance assessment employed k-fold cross-
validation methodology to ensure robust and unbiased
evaluation. The evaluation framework includes: (1)
hyperparameter optimization phase using 5-fold cross-
validation to balance computational efficiency with statistical
reliability, (2) final model evaluation using comprehensive
performance assessment, and (3) multiple metrics evaluation
including Accuracy (proportion of correct predictions),
Precision (ability not to label negative samples as positive),
Recall (ability to find all positive samples), and F1-Score
(harmonic average of Precision and Recall). The



comprehensive methodology workflow encompasses dataset
loading, systematic data cleaning, feature-target separation,
RandomizedSearchCV implementation for hyperparameter
space exploration, and evaluation phase generating analytical
outputs including visualization plots, mutual information-
based feature importance analysis, accuracy scores, and
detailed classification reports as shown in Figure 3 and Table
III. This evaluation ensures reliable estimates of model
generalization capability through proper train-validation-test
separation.

IV. RESULT AND DISCUSSION

A. Feature Importance Analysis

This research utilizes a Mutual Information-based feature
importance analysis to quantitatively assess the degree to
which each independent variable contributes to the probability
of depression. The resulting importance scores offer a
comprehensive understanding of the relative influence of each
factor, as illustrated in the figure below.
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Fig. 2. Visualization of Mutual Information of Feature Influence on
Depression

Mutual information analysis revealed significant variation
in the predictive strength of lifestyle factors for depression
classification. Academic Pressure emerged as the strongest
predictor with a mutual information value of 0.120964,
followed by Financial Stress (0.069553), indicating high
influence levels on depression outcomes. Dietary Habits
showed moderate predictive value (0.022951), while Gender
(0.005890) and Sleep Duration (0.005061) demonstrated
medium influence. Family History of Mental Illness had the
lowest predictive value (0.002490). These findings align with
contemporary research highlighting the substantial impact of
academic stress on mental health, especially among college
students and young adults [27].

TABLE L MUTUAL INFORMATION FOR LIFESTYLE
FACTORS
Rank Features MI Score Influence Level
1 Academic Pressure 0.120964 High
2 Financial Stress 0.069553 High
3 Dietary Habits 0.022951 Medium
4 Gender 0.005890 Medium
5 Sleep Duration 0.005061 Medium
Family History of
6 Mental Illnes 0.002490 Low

B. Hyperparameter Optimization Results

The randomized search process successfully identified the
optimal hyperparameter configuration through exploration of
100 different parameter combinations using 4-fold cross-

validation, totaling 400 individual model training sessions.
The optimal configuration features a compact network
architecture with two hidden layers (20,10 neurons), tanh
activation function, SGD solver with constant learning rate,
and alpha regularization of 0.005567. This architecture
balances model complexity with generalization capability,
avoiding overfitting while maintaining sufficient capacity to
learn relevant patterns, with the tanh activation function
proving most effective due to its centralized output range and
smooth gradient properties that facilitate stable training [28].

TABLE II. OPTIMAL HYPERPARAMETER CONFIGURATION
Parameters Optimal Value Parameter Space
. . [(50,), (100,), (50,25),
Hidden L. 20,10
idden Layer Sizes (20,10) (100,50), (20,10)]
Activation Function tanh ['relu’, 'tanh', 'logistic']
Solver sgd ['adam’, 'sgd', 'Ibfgs']
Learning Rate constant [eonstant’ l.n visalign’
‘adaptive']
Alpha
0.00556 0.0001, 0.01
(Regularization) 7 [ ’ ]

C. Model Performance Comparison

The hyperparameter optimization process resulted in
consistent improvements across all evaluated performance
metrics, with the optimized model achieving 77.77% accuracy
compared to the baseline's 76.02%, representing a 1.75
percentage point improvement. The optimization also
enhanced precision (0.77 vs 0.76), recall (0.77 vs 0.76), and
F1-Score (0.76 vs 0.75), demonstrating improved balance
between precision and recall that is particularly valuable in
mental health applications where false positives and false
negatives have significant implications for patient care. The
superiority of the optimized ANN can be attributed to optimal
network architecture selection (20,10 hidden layers), tanh
activation function's zero-centered output facilitating stable
gradient flow, SGD solver providing superior convergence
characteristics, and proper regularization parameter tuning
(alpha=0.005567) that prevents overfitting while maintaining
learning capacity.

TABLE IIL. PERFORMANCE COMPARISON OF ANN MODELS
Model Accuracy Precision Recall F1-Score
Baseline ANN 76.02% 0.76 0.76 0.75
Optimized 77.77% 0.77 0.77 0.76
ANN
Improvement +1.75% +0.01 +0.01 +0.01

D. Clinical Context and Practical Relevance

The improvement in accuracy to 77.77% through
hyperparameter optimization represents a technically
significant advancement. However, to assess its clinical
relevance, it is important to compare this performance with
standard screening tools currently in use, such as the Patient
Health Questionnaire-9 (PHQ-9). Clinical validation studies
for PHQ-9 generally demonstrate high sensitivity and
specificity, often above 80%, for detecting major depressive
disorder. Although our model's accuracy has not yet surpassed
the benchmark of these primary diagnostic tools, it shows
great potential as an automated and large-scale pre-screening
tool. With its ability to objectively analyze lifestyle factors,
this system can help identify at-risk individuals who require
further clinical evaluation, particularly in environments with
limited mental health resources.



E. Dataset Size Impact Analysis

Performance analysis across different dataset sizes reveals
that the benefits of hyperparameter optimization are most
pronounced when working with limited training data, with
smaller datasets (500 samples) showing substantial
improvement of 1.9 percentage points compared to 0.7
percentage points for the full dataset (27,898 samples). As
dataset size increases from 500 to 27,898 samples, both
baseline and optimized ANN accuracy improve, but the
relative benefit of optimization decreases, suggesting that
larger datasets inherently provide stronger training signals that
partially compensate for less optimal hyperparameter choices,
making systematic parameter tuning increasingly important in
data-poor scenarios [29].

TABLE IV. PERFORMANCE COMPARISON OF ANN MODELS
. Optimized
Dafaset Baseline ANN ANN Improvement
Size Accuracy A
ccuracy
10,000 72.8% 73.9% +1.1%
20,000 75.9% 76.6% +0.7%
27,898 76.02% 77.7% +1.57%
500 68.2% 70.1% +1.9%

F. Cross-Validation Analysis

Cross-validation analysis through RandomizedSearchCV
demonstrates the stability and reliability of the
hyperparameter optimization process, with the graph showing
relatively stable fluctuations in mean CV accuracy across the
20 best parameter trials, achieving highest accuracy of
0.77225 in the 1st and 2nd trials before gradually declining to
0.77040 in the 20th trial.
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Fig. 3. Visualization of Cross-Validation (Randomized Search) MeanCV
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The analysis reveals three distinctive performance phases:
a high plateau (trials 1-2), gradual decline (trials 3-11), and
sharper decline (trials 12-20), with low standard deviation
(0.00055) and small range of variation (0.00185) indicating
that RandomizedSearchCV successfully identified optimal
parameter combinations while the neural network architecture
remains robust to moderate hyperparameter variations [30].

TABLE V. CROSS-VALIDATION STABILITY ANALYSIS
Statistical Metrics Value
Mean Highest CV Accuracy 0.77225
Mean Lowest CV Accuracy 0.77225
Average Mean CV Accuracy 0.77155

Statistical Metrics Value
Standard Deviation 0.00055
Range of Variation 0.00185

G. Ethical Consideration and Limitations

The implementation of automated mental health
classification systems brings crucial ethical considerations,
particularly regarding the impact of classification errors.
Although optimization has improved the balance between
precision and recall, the risks of false positives and false
negatives remain and have significant real-world implications.

False positives, where the model incorrectly identifies
healthy individuals as having potential depression, can cause
unnecessary anxiety, social stigma, and inefficient allocation
of clinical resources. Conversely, false negatives, where the
model fails to identify individuals who are actually
experiencing depression, have far more serious consequences.
This failure can delay or hinder individuals' access to the care
they need, potentially worsening their condition. Therefore,
this model should be positioned as a decision support tool, not
areplacement for clinical diagnosis by professional personnel.

V. CONCLUSION

This study successfully demonstrated that Randomized
Search Cross-Validation is highly effective for optimizing
hyperparameters in Artificial Neural Networks for mental
health classification, achieving accuracy improvement from
76.02% to 77.77% with significant clinical relevance, while
mutual information analysis revealed academic stress as the
strongest predictor (0.120964) followed by financial stress
(0.069553), providing valuable insights for mental health
screening programs. This research contributes strong
empirical evidence to computational psychiatry regarding
automatic hyperparameter optimization effectiveness and
establishes groundwork for advanced screening tools
supporting clinical decision-making and expanding mental
health assessment access. Future research should explore
deeper neural architectures (CNN, RNN), ensemble methods,
multimodal data integration combining lifestyle factors with
physiological sensors and natural language processing, real-
time adaptation mechanisms for continuous learning,
Explainable AI frameworks for transparent healthcare
decision-making, and large-scale longitudinal studies to
validate model stability and generalization across diverse
demographic groups and cultural contexts for broader clinical
implementation.
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