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Abstract— This study uses hyperparameter optimization 

using Randomized Search Cross-Validation 

(RandomizedSearchCV) for Artificial Neural Networks (ANN) 

in mental health classification based on lifestyle factors. The 

study analyzed the relationship between various lifestyle 

parameters, including academic pressure, financial pressure, 

eating habits, sleep duration, family history of mental illness, 

and gender and depression outcomes. Using a dataset consisting 

of 27,898 samples, this study implemented mutual information 

feature selection and compared the performance of the basic 

ANN with the optimized hyperparameters. The results showed 

that fine-tuning the hyperparameters led to a noticeable jump 

in accuracy, going from 76% to 77%. It turns out that academic 

pressure is the most significant factor, with a mutual 

information score of approximately 0.120964. It slightly 

surpasses financial pressure, which only scores around 

0.069553. This research provides insight into the effectiveness of 

automatic hyperparameter optimization for mental health 

classification tasks and its contribution to the development of 

more accurate mental health screening systems. 

Keywords— Artificial Neural Network, Hyperparameter 

Optimization, Lifestyle Factors, Mental Health Classification, 

Mutual Information, Randomized Search 

I. INTRODUCTION 

Mental health disorders have emerged as one of the most 

pressing public health challenges globally, with depression 

affecting over 280 million people worldwide according to the 

World Health Organization[1]. The COVID-19 pandemic has 

further intensified this crisis, leading to unprecedented 

increases in depression and anxiety symptoms across 

populations[2]. Traditional diagnostic approaches, while 

clinically established, face significant limitations including 

subjective variability, resource intensity, and accessibility 

constraints, particularly in underserved regions where mental 

health professionals are scarce [3]. 
Recent advances in computational psychiatry have 

demonstrated the transformative potential of machine learning 
approaches in mental health assessment. Comprehensive 
studies have shown that automated systems can achieve 
classification accuracies exceeding 80% across various mental 
health prediction tasks [4]. The integration of artificial 
intelligence in psychiatric applications has been validated 

through deep learning implementations, establishing robust 
foundations for automated screening systems [5]. These 
technological innovations address critical gaps by providing 
objective, scalable, and consistent evaluation mechanisms that 
complement rather than replace clinical expertise. 

Among available machine learning algorithms, Artificial 
Neural Networks (ANN) demonstrate superior capabilities for 
mental health classification due to their ability to capture 
complex non-linear relationships inherent in psychological 
data [6]. Unlike traditional methods such as Support Vector 
Machines or logistic regression, ANN can automatically learn 
hierarchical feature representations and handle continuous 
learning scenarios effectively [7]. The gradient-based 
optimization in ANN provides superior adaptability to data 
variations and more precise hyperparameter control compared 
to ensemble methods like Random Forest [8]. 

However, systematic reviews reveal a critical 
methodological gap in current mental health machine learning 
research: approximately 73% of studies rely on default 
parameter settings, leading to suboptimal performance and 
compromised validity [9]. Inadequate hyperparameter 
optimization significantly impacts model generalizability, 
with performance drops of up to 15% documented when 
models are tested on independent datasets [10]. This 
methodological rigor gap creates barriers to translating 
promising research findings into practical clinical 
applications. 

Contemporary research has increasingly focused on 
hyperparameter optimization techniques to address these 
limitations. Randomized search approaches have 
demonstrated superior efficiency compared to traditional grid 
search methods while maintaining comparable performance 
[11]. Recent studies have shown significant improvements in 
depression prediction accuracy through systematic 
hyperparameter tuning across various machine learning 
algorithms [12]. The convergence of optimization theory and 
mental health applications establishes the foundation for 
developing clinically viable automated screening systems. 

Lifestyle factors have emerged as significant predictors in 
mental health classification, with studies demonstrating their 
effectiveness in automated screening systems [13]. Academic 

979-8-3503-9306-4/25/$31.00 ©2025 IEEE

2025 9th International Conference On Electrical, Electronics And Information Engineering (ICEEIE)



and financial stress have been identified as primary drivers of 
mental health issues among young adults, making them 
crucial features for prediction models [14]. The integration of 
lifestyle-based features with optimized machine learning 
models represents a promising approach for developing 
accessible mental health screening tools. 

This research addresses the documented methodological 
gaps by systematically applying Randomized Search Cross-
Validation for ANN hyperparameter optimization in lifestyle-
based mental health classification. Our contributions include: 
(1) quantifying tangible performance improvements through 
rigorous hyperparameter optimization, achieving accuracy 
improvements from 76.02% to 77.77%; (2) validating lifestyle 
factors as depression predictors through Mutual Information 
analysis; and (3) providing a transparent, replicable 
methodology that bridges the gap between theoretical 
machine learning capabilities and practical clinical 
implementation[15]. This investigation advances 
understanding of systematic hyperparameter optimization 
effectiveness in mental health classification, offering a 
methodological framework for developing reliable automated 
screening systems. 

II. RELATED RESEARCH

Recent developments in computational psychiatry have 

demonstrated significant potential for machine learning 

approaches in mental health assessment. Durstewitz et al [16] 

conducted a comprehensive review of deep neural networks 

in psychiatry, analyzing neuroimaging data and biomarkers 

for mental disorder diagnosis with accuracies reaching 85-

90%. However, their focus on neuroimaging data limited 

comprehensive evaluation of lifestyle-based factors that are 

more accessible for large-scale screening applications. 

Similarly, Koeppe et al [17] developed an explainable AI 

framework using physics-informed neural networks with 

Bayesian optimization, showing 40% improvement in model 

interpretability while maintaining prediction accuracy, but 

was constrained by small dataset size (n=2,847) and limited 

demographic validation. 

Systematic literature reviews have revealed critical gaps 

in current methodological approaches. Ningrum and 

Ismawardi [18] analyzed 150 studies from 2018-2024, 

finding that hyperparameter optimization significantly affects 

model performance, with random search and Bayesian 

optimization providing 3-7% accuracy improvements over 

default parameters. However, their review revealed that 68% 

of studies failed to report hyperparameter optimization 

details, and only 23% provided reproducible frameworks. 

Recent implementations by Saelan and Subekti [19] 

demonstrated that combining mutual information feature 

selection with randomized search hyperparameter tuning can 

improve accuracy by up to 12%, though their work lacked 

validation in healthcare contexts where clinical 

interpretability requirements differ significantly from 

commercial applications. 

Mental health-specific applications have shown 

promising results but with notable limitations. Rahma et al. 

[20] developed an adolescent mental health prediction system 

using school environment factors, achieving 79.2% accuracy 

with ANN hyperparameter optimization and identifying 

academic stress and financial stress as strongest predictors 

(mutual information scores of 0.085 and 0.072). Despite good 

performance, their research was limited by narrow 

demographic focus and lack of long-term validation. Based 

on comprehensive literature analysis, several critical 

limitations emerge: methodological inconsistency with 73% 

of studies using default hyperparameters, limited 

generalizability due to small datasets, inadequate 

reproducibility lacking methodological detail, insufficient 

clinical validation without comparison to established 

screening tools, and feature selection bias limiting clinical 

utility [21]. These identified gaps underscore the critical need 

for systematic, large-scale studies that employ rigorous 

hyperparameter optimization, comprehensive feature 

analysis, and clinically relevant validation frameworks—

precisely the research objectives addressed in this 

investigation. 

III. METHOD

This study employed a dataset comprising 27,898 samples 
with six lifestyle-related predictor variables: Gender, 
Academic Stress, Sleep Duration, Dietary Habits, Financial 
Stress, and Family History of Mental Illness, with Depression 
as the binary target variable for classification. The data 
preprocessing stage involved several critical steps: (1) 
systematic removal of duplicate records to prevent data 
leakage and bias, (2) handling missing values through mean 
imputation for numerical variables and mode imputation for 
categorical variables, (3) categorical encoding using 
appropriate numerical representation, and (4) feature scaling 
using StandardScaler to normalize input variable ranges. 

The dataset was systematically divided using Stratified 
Train-Test Split approach to ensure representative distribution 
of the target variable across both training and testing sets. The 
data split followed an 80:20 ratio, where 22,318 samples 
(80%) were allocated for training purposes, including 
hyperparameter optimization and model training, while 5,580 
samples (20%) were reserved exclusively for final model 
evaluation. This stratified splitting approach ensures that both 
training and testing sets maintain the same proportion of 
positive and negative depression cases as the original dataset, 
preventing bias from uneven class distribution. The training 
set was further subdivided during k-fold cross-validation 
(k=5) procedures for robust hyperparameter optimization, 
ensuring no information leakage from the final test set. 

A. Feature Selection Using Mutual Information 

Mutual Information analysis was implemented to measure 
the statistical dependency between each lifestyle factor and 
depression outcome. This information theory measure 
provides objective assessment of feature relevance by 
quantifying the amount of information one variable contains 
about another [22]. The mathematical formulation of Mutual 
Information is expressed as: 

����; �� = ∑ ∑ 
��, 
���� � ���,��
����������∈��∈�    (1)

Where : 

x : lifestyle factors 

y : depression status 

p(x,y) : the joint probability of feature and target 

 occurring simultaneously 



p(x) and p(y) : marginal probability of each variable 

 independently 

A higher MI score indicates a stronger statistical 
dependency between the feature and target variable, indicating 
greater predictive value for the classification task. The mutual 
information scores for all features are presented in Table I, 
with corresponding feature importance visualization shown in 
Figure 2. 

B. Artificial Neural Network Architecture 

The basic ANN was implemented using Multi-Layer 

Perceptron (MLP) architecture, representing a feedforward 

neural network design suitable for classification tasks. The 

network structure consists of: (1) an input layer with six 

neurons corresponding to preprocessed lifestyle features, (2) 

one or more hidden layers with variable configurations 

determined through hyperparameter tuning, and (3) an output 

layer with two neurons for binary depression classification. 

The forward propagation process in neural networks follows 

the mathematical representation [23]: 

�� = �������� �  ������� = !"����#  (2) 

Where : 

�� : weighted inputs as a linear combination of 

  inputs and weights 

�� and  ��� : parameters that can be learned and 

    adjusted during training 

���� : activation output after activation function 
 application 

C. Hyperparameter Tuning with Randomized Search 

Randomized Search Cross-Validation was employed to 
systematically optimize neural network hyperparameters, 
overcoming computational challenges associated with 
exhaustive parameter exploration by randomly sampling from 
predefined parameter distributions [24]. The optimization 
process targets five critical hyperparameters: (1) Hidden 
Layer Sizes with options [(50,), (100,), (50,25), (100,50), 
(20,10)], (2) activation functions ['relu', 'tanh', 'logistic'], (3) 
solver algorithms ['adam', 'sgd', 'lbfgs'], (4) learning rate 
schedules ['constant', 'invscaling', 'adaptive'], and (5) alpha 
regularization parameter following log-uniform distribution 
[0.0001, 0.01]. The objective function for random search 
optimization is formulated as [25]: 

$∗ = �&�'()*∈+ �
,∑ -".*"�/0123�2� #, �/0123�2� #,

24�  (3) 

Where: 

$∗  : optimal hyperparameter configuration for mental health

 classification 

5  : search space containing all combinations of architecture,

 activation function, optimizer, learning rate 

6  : number of cross-validation folds (5 or 10) for robust

      performance estimation 

L    : loss function (binary cross entropy) for depression 

 classification 

.*  : Neural network model that converts lifestyle features

 into predicted depression probabilities 

Fig. 1. Depression Prediction Workflow with Optimized ANN 

 The comprehensive methodology workflow begins with 
loading a dataset of 27,898 mental health samples, followed 
by systematic data cleaning that handles missing values 
through parallel strategies of NaN replacement and 
imputation. The preprocessing phase executes feature-target 
separation to separate lifestyle variables from depression 
outcomes, remove uninformative ID fields, and encode 
categorical features for numerical representation. After feature 
scaling and train-test separation, the RandomizedSearchCV 
core implementation explores the hyperparameter space 
through parallel paths of optimal ANN model identification 
and parameter space exploration by random hyperparameter 
sampling and cross-validation. The evaluation phase results in 
a comprehensive model assessment using multiple metrics 
(accuracy, precision, recall, F1-score) and generates analytical 
outputs including visualization plots, mutual information-
based feature importance analysis, accuracy scores, and 
detailed classification reports, ultimately identifying the best 
parameters for optimal model configuration and ensuring 
research productivity [26]. The hyperparameter search space 
and optimal configurations are detailed in Table II. 

D. Model Evaluation and Performance Assessment 

The performance assessment employed k-fold cross-
validation methodology to ensure robust and unbiased 
evaluation. The evaluation framework includes: (1) 
hyperparameter optimization phase using 5-fold cross-
validation to balance computational efficiency with statistical 
reliability, (2) final model evaluation using comprehensive 
performance assessment, and (3) multiple metrics evaluation 
including Accuracy (proportion of correct predictions), 
Precision (ability not to label negative samples as positive), 
Recall (ability to find all positive samples), and F1-Score 
(harmonic average of Precision and Recall). The 



comprehensive methodology workflow encompasses dataset 
loading, systematic data cleaning, feature-target separation, 
RandomizedSearchCV implementation for hyperparameter 
space exploration, and evaluation phase generating analytical 
outputs including visualization plots, mutual information-
based feature importance analysis, accuracy scores, and 
detailed classification reports as shown in Figure 3 and Table 
III. This evaluation ensures reliable estimates of model
generalization capability through proper train-validation-test 
separation. 

IV. RESULT AND DISCUSSION

A. Feature Importance Analysis 

 This research utilizes a Mutual Information-based feature 
importance analysis to quantitatively assess the degree to 
which each independent variable contributes to the probability 
of depression. The resulting importance scores offer a 
comprehensive understanding of the relative influence of each 
factor, as illustrated in the figure below.  

Fig. 2. Visualization of Mutual Information of Feature Influence on 

Depression 

Mutual information analysis revealed significant variation 
in the predictive strength of lifestyle factors for depression 
classification. Academic Pressure emerged as the strongest 
predictor with a mutual information value of 0.120964, 
followed by Financial Stress (0.069553), indicating high 
influence levels on depression outcomes. Dietary Habits 
showed moderate predictive value (0.022951), while Gender 
(0.005890) and Sleep Duration (0.005061) demonstrated 
medium influence. Family History of Mental Illness had the 
lowest predictive value (0.002490). These findings align with 
contemporary research highlighting the substantial impact of 
academic stress on mental health, especially among college 
students and young adults [27]. 

TABLE I. MUTUAL INFORMATION FOR LIFESTYLE 

FACTORS 

Rank Features MI Score Influence Level 

1 Academic Pressure 0.120964 High 

2 Financial Stress 0.069553 High 

3 Dietary Habits 0.022951 Medium 

4 Gender 0.005890 Medium 

5 Sleep Duration 0.005061 Medium 

6 
Family History of 

Mental Illnes 
0.002490 Low 

B. Hyperparameter Optimization Results 

The randomized search process successfully identified the 
optimal hyperparameter configuration through exploration of 
100 different parameter combinations using 4-fold cross-

validation, totaling 400 individual model training sessions. 
The optimal configuration features a compact network 
architecture with two hidden layers (20,10 neurons), tanh 
activation function, SGD solver with constant learning rate, 
and alpha regularization of 0.005567. This architecture 
balances model complexity with generalization capability, 
avoiding overfitting while maintaining sufficient capacity to 
learn relevant patterns, with the tanh activation function 
proving most effective due to its centralized output range and 
smooth gradient properties that facilitate stable training [28]. 

TABLE II. OPTIMAL HYPERPARAMETER CONFIGURATION 

Parameters Optimal Value Parameter Space 

Hidden Layer Sizes (20,10) 
[(50,), (100,), (50,25), 

(100,50), (20,10)] 

Activation Function tanh ['relu', 'tanh', 'logistic'] 

Solver sgd ['adam', 'sgd', 'lbfgs'] 

Learning Rate constant 
['constant', 'invisalign', 

'adaptive'] 

Alpha 

(Regularization) 
0.005567 [0.0001, 0.01] 

C. Model Performance Comparison 

 The hyperparameter optimization process resulted in 
consistent improvements across all evaluated performance 
metrics, with the optimized model achieving 77.77% accuracy 
compared to the baseline's 76.02%, representing a 1.75 
percentage point improvement. The optimization also 
enhanced precision (0.77 vs 0.76), recall (0.77 vs 0.76), and 
F1-Score (0.76 vs 0.75), demonstrating improved balance 
between precision and recall that is particularly valuable in 
mental health applications where false positives and false 
negatives have significant implications for patient care. The 
superiority of the optimized ANN can be attributed to optimal 
network architecture selection (20,10 hidden layers), tanh 
activation function's zero-centered output facilitating stable 
gradient flow, SGD solver providing superior convergence 
characteristics, and proper regularization parameter tuning 
(alpha=0.005567) that prevents overfitting while maintaining 
learning capacity. 

TABLE III. PERFORMANCE COMPARISON OF ANN MODELS 

Model Accuracy Precision Recall F1-Score 

Baseline ANN 76.02% 0.76 0.76 0.75 

Optimized 

ANN 

77.77% 0.77 0.77 0.76 

Improvement +1.75% +0.01 +0.01 +0.01 

D. Clinical Context and Practical Relevance 

The improvement in accuracy to 77.77% through 
hyperparameter optimization represents a technically 
significant advancement. However, to assess its clinical 
relevance, it is important to compare this performance with 
standard screening tools currently in use, such as the Patient 
Health Questionnaire-9 (PHQ-9). Clinical validation studies 
for PHQ-9 generally demonstrate high sensitivity and 
specificity, often above 80%, for detecting major depressive 
disorder. Although our model's accuracy has not yet surpassed 
the benchmark of these primary diagnostic tools, it shows 
great potential as an automated and large-scale pre-screening 
tool. With its ability to objectively analyze lifestyle factors, 
this system can help identify at-risk individuals who require 
further clinical evaluation, particularly in environments with 
limited mental health resources. 



E. Dataset Size Impact Analysis 

Performance analysis across different dataset sizes reveals 
that the benefits of hyperparameter optimization are most 
pronounced when working with limited training data, with 
smaller datasets (500 samples) showing substantial 
improvement of 1.9 percentage points compared to 0.7 
percentage points for the full dataset (27,898 samples). As 
dataset size increases from 500 to 27,898 samples, both 
baseline and optimized ANN accuracy improve, but the 
relative benefit of optimization decreases, suggesting that 
larger datasets inherently provide stronger training signals that 
partially compensate for less optimal hyperparameter choices, 
making systematic parameter tuning increasingly important in 
data-poor scenarios [29]. 

TABLE IV. PERFORMANCE COMPARISON OF ANN MODELS 

Dataset 
Size 

Baseline ANN 
Accuracy 

Optimized 
ANN 

Accuracy 
Improvement 

10,000 72.8% 73.9% +1.1% 

20,000 75.9% 76.6% +0.7% 

27,898 76.02% 77.7% +1.57% 

500 68.2% 70.1% +1.9% 

F. Cross-Validation Analysis 

Cross-validation analysis through RandomizedSearchCV 
demonstrates the stability and reliability of the 
hyperparameter optimization process, with the graph showing 
relatively stable fluctuations in mean CV accuracy across the 
20 best parameter trials, achieving highest accuracy of 
0.77225 in the 1st and 2nd trials before gradually declining to 
0.77040 in the 20th trial.  

Fig. 3. Visualization of Cross-Validation (Randomized Search) MeanCV 

Accuracy 

The analysis reveals three distinctive performance phases: 
a high plateau (trials 1-2), gradual decline (trials 3-11), and 
sharper decline (trials 12-20), with low standard deviation 
(0.00055) and small range of variation (0.00185) indicating 
that RandomizedSearchCV successfully identified optimal 
parameter combinations while the neural network architecture 
remains robust to moderate hyperparameter variations [30]. 

TABLE V. CROSS-VALIDATION STABILITY ANALYSIS 

Statistical Metrics Value 

Mean Highest CV Accuracy 0.77225 

Mean Lowest CV Accuracy 0.77225 

Average Mean CV Accuracy 0.77155 

Statistical Metrics Value 

Standard Deviation 0.00055 

Range of Variation 0.00185 

G. Ethical Consideration and Limitations 

The implementation of automated mental health 
classification systems brings crucial ethical considerations, 
particularly regarding the impact of classification errors. 
Although optimization has improved the balance between 
precision and recall, the risks of false positives and false 
negatives remain and have significant real-world implications. 

False positives, where the model incorrectly identifies 
healthy individuals as having potential depression, can cause 
unnecessary anxiety, social stigma, and inefficient allocation 
of clinical resources. Conversely, false negatives, where the 
model fails to identify individuals who are actually 
experiencing depression, have far more serious consequences. 
This failure can delay or hinder individuals' access to the care 
they need, potentially worsening their condition. Therefore, 
this model should be positioned as a decision support tool, not 
a replacement for clinical diagnosis by professional personnel. 

V. CONCLUSION 

This study successfully demonstrated that Randomized 
Search Cross-Validation is highly effective for optimizing 
hyperparameters in Artificial Neural Networks for mental 
health classification, achieving accuracy improvement from 
76.02% to 77.77% with significant clinical relevance, while 
mutual information analysis revealed academic stress as the 
strongest predictor (0.120964) followed by financial stress 
(0.069553), providing valuable insights for mental health 
screening programs. This research contributes strong 
empirical evidence to computational psychiatry regarding 
automatic hyperparameter optimization effectiveness and 
establishes groundwork for advanced screening tools 
supporting clinical decision-making and expanding mental 
health assessment access. Future research should explore 
deeper neural architectures (CNN, RNN), ensemble methods, 
multimodal data integration combining lifestyle factors with 
physiological sensors and natural language processing, real-
time adaptation mechanisms for continuous learning, 
Explainable AI frameworks for transparent healthcare 
decision-making, and large-scale longitudinal studies to 
validate model stability and generalization across diverse 
demographic groups and cultural contexts for broader clinical 
implementation. 
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