

Ahmad Fausan¹.Muh. Luthfi²

¹Product of Electrical Engineering, Faculty of Engineering, Unismuh,
Makassar

mail: [AhmadFausan4@gmail.com](mailto:AhamdFausan4@gmail.com)

²Product of Electrical Engineering, Faculty of Engineering, Unismuh,
Makassar

E mail: Uppy.cr@gmai.com

ABSTRACT

Abstract: Ahmad Fausan and Muh. Luthfi (2021) Analysis of Determination of the Nominal Flow of Melting Safety Against the Motor Capacity of Ejector Pumps and Distalation Pumps in the Production of Seawater into Freshwater, guided by DR. Eng. Ir H. Zulfajri Basri Hasanuddin, M.Eng, Rizal A Duyo, S.T., M.T. The purpose of this study is, To determine the pump system in the management of sea water into fresh water. To find out the motor power used for pumps in the management of sea water into fresh water and to find out the calculations for the power breaker current and the safety of the pump motor melting in the management of sea water into fresh water. The method used in this research is to conduct research and collect data in the fresh water generator BPLP Makassar. The results obtained in this study are. The distillation pump functions to suck distilled water or distilled water that has been processed and then pumped into fresh water storage tanks whose operating system operates after the ejector pump works. The motor used in the ejector pump and the distillation pump is a three-phase induction motor. In accordance with the calculation results of the motor power used, for the ejector pump 3,891 KW and for the 0.473 KW distillation pump. The results of the calculations are in accordance with existing data, namely for the ejector pump of 3.7 KW and for the 0.4 KW distillation pump. Salinity alarm is used to detect salinity in distilled water.

Keywords ; Current, Motor, Pump, Ejector and Distalation