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Abstract

Diagnosing ischemic stroke from CT scan images presents significant challenges in achieving the speed
and accuracy essential for clinical decision-making, where conventional CNN-based methods show
limitations. This study addresses these gaps by developing an automated diagnostic system using a Swin
Transformer model integrated with an Out-of-Distribution (OOD) detection mechanism to enhance diagnostic
reliability. The model was trained and validated on a dataset of 583 brain CT images from 341 patients at a
regional hospital in Makassar. This dataset, labeled by two expert radiologists (k=0.94), was categorized into
ischemic stroke (206), normal (228), and non-brain CT scans (149) as the OOD class. The Swin Transformer
achieved an exceptional validation accuracy of 99.15% after 10 epochs, with a highly efficient total training
time of approximately 24 minutes. The model’s superiority was further confirmed by high weighted averages
for precision (0.99), recall (0.99), and F1-score (0.99). Critically, the OOD detection module demonstrated
perfect performance, achieving 100% accuracy in identifying irrelevant images with a 0% false positive rate,
thereby preventing erroneous diagnoses from non-brain scans. Robustness testing under varied lighting
conditions also showed a 100% success rate. Real-time viability was confirmed through external validation
using a live camera, yielding a rapid inference time of 0.3 seconds per image. This study concludes that the
developed system offers a highly accurate, robust, and safe solution, proving its readiness for clinical
implementation to support ischemic stroke diagnosis in Indonesia.
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manual interpretation by radiologists. These

. INTRODUCTION

Ischemic stroke is one of the leading causes
of death and neurological disability worldwide,
with its increasing prevalence placing a
significant burden on global health systems [1, 2].
Early detection and accurate diagnosis are key to
preventing long-term neurological effects, where
medical imaging, particularly = Computed
Tomography (CT) scans, play a vital role as the
gold standard in identifying acute vascular
abnormalities in the brain [3, 4]. Speed in
diagnosis is crucial, as delays can be fatal for
patients [5]. The ability to quickly distinguish
between ischemic stroke and normal conditions
from CT scan images is a key foundation in the
clinical management of head injuries in the
emergency department. [6].

However, the current diagnostic process
still faces fundamental challenges centred on
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limitations include extreme workloads, visual
fatigue, and variability in interpretation between
radiologists, which can be influenced by
experience levels and other subjective factors [7,
8]. The urgent need for an automated and reliable
clinical decision support system is increasingly
evident to enhance diagnostic consistency,
accuracy, and efficiency [9]. These automation
efforts are expected not only to streamline
radiology workflows but also to provide an
objective “second pair of eyes” to minimize the
risk of diagnostic errors in critical cases [10,11].

With advances in technology, artificial
intelligence, particularly deep learning, has
shown revolutionary potential in medical image
analysis [12]. Convolutional Neural Networks
(CNN) models initially dominated research in this
field and demonstrated impressive performance
[13]. However, CNN architectures have inherent
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limitations, such as a bias toward local texture
features and difficulty in capturing distant
contextual dependencies within an image, which
are crucial for understanding complex
pathological abnormalities in brain CT scans [14,
15]. These limitations have driven the emergence
of new Transformer-based architectures, such as
Vision Transformer (ViT) and Swin Transformer,
which have proven superior in modeling global
relationships through self-attention mechanisms
[16, 17].

Another crucial but often overlooked
challenge in Al-based medical diagnosis systems
is the ability to handle Out-of-Distribution (OOD)
data inputs. In a clinical context, diagnosis
systems must be able to identify and reject
irrelevant images or those outside the training
domain, such as CT scans of other organs or
non-medical images [18, 19]. The inability to
detect OOD can lead to fatal misdiagnoses,
where the system provides incorrect predictions
with high confidence levels for inputs that should
be rejected [20]. Multi-dimensional robustness
testing is also required to simulate real-world
conditions, including variations in image
acquisition distance and different lighting
conditions [21- 23].

To address these challenges, this study
proposes an innovation by integrating the
advanced Swin Transformer architecture with an
Out-of-Distribution (OOD) detection module
specifically designed for ischemic stroke
diagnosis from CT scan images. While similar
architectures have been explored in other
domains, this represents the first implementation
combining Swin Transformer with OOD detection
specifically tailored for stroke diagnosis,
incorporating domain-specific features and
clinical validation requirements. This integration
is the first of its kind to be implemented for
ischemic stroke diagnosis from CT scan images,
creating a system that is not only accurate but
also safe. The OOD capability enables the model
to identify and reject irrelevant inputs (e.g.,
abdominal CT scan images or facial photos), a
critical safety feature often overlooked in clinical
artificial intelligence models and serves to
prevent fatal misdiagnoses due to data input
errors.

Another unique contribution of this study is
the use and validation of the model on an
indigenous dataset obtained directly from a local
medical center in Indonesia, namely RSUD
Labuang Baji, Makassar. Validation on this
specific population dataset ensures that the
developed model has real relevance and clinical
application for the Indonesian demographic
context, an important step that is often
overlooked in medical artificial intelligence
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research, which predominantly uses data from
Western populations [24]. The model's readiness
for implementation is also demonstrated through
live camera testing, which simulates the
diagnostic workflow in real-time.

Thus, the main objective of this study is to
design, implement, and validate an accurate,
robust, and safe Swin Transformer-based
concussion diagnosis system that can improve
the quality of healthcare services in Indonesia,
especially in areas with limited radiologists. The
main contributions of this paper are the
introduction of a hybrid Swin Transformer
architecture with OOD detection for head CT
scan diagnosis, performance validation using
clinically relevant local datasets, and
demonstration of model robustness through a
comprehensive distance and light robustness
testing framework. Through a series of rigorous
experiments, we demonstrate that the proposed
system is ready to support more reliable and
efficient clinical decision-making [25].

Il. METHODOLOGY

A. Dataset Acquisition and Characteristic

This study used a dataset of brain CT scan
images obtained from Labuang Baji Regional
General Hospital, Makassar, with ethical
approval from the hospital's ethics committee.
The dataset collection was supervised by the
Head of Radiology Department and coordinated
by the hospital's medical imaging team.

The dataset comprises images from 341
unique patients with the following demographic
characteristics 186 male patients (54.5%) and
155 female patients (45.5%), with ages ranging
from 35 to 82 years (mean age 62.4 + 12.8
years). To ensure data quality and minimize
patient-specific bias, a maximum of 3 CT slices
per patient were included in the dataset, with an
average of 1.7 images per patient.

Ground truth labeling was performed through
a rigorous process involving two certified
radiologists with over 10 years of experience in
neuroimaging. Initial labeling was conducted
independently by each radiologist, followed by
consensus meetings for discordant cases. Inter-
rater agreement was assessed using Cohen's
kappa coefficient, achieving k = 0.94, indicating
excellent agreement. For quality assurance, 10%
of randomly selected cases were re-evaluated by
a third independent radiologist, achieving 98.3%
concordance with the consensus labels.

The dataset consists of three classes
designed to accommodate classification and
Out-of-Distribution (OOD) detection needs:
normal CT scans with 228 images, ischemic
stroke CT scans with 206 images, and non-brain
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CT scans with 149 random images serving as the
OOD detection class. The non-brain CT scans
included abdominal CT (45 images), chest CT
(38 images), pelvic CT (33 images), and
miscellaneous medical images (33 images) to
simulate real-world scenarios where irrelevant
images might be accidentally input into the
diagnostic system. The dataset composition
shows a relatively balanced distribution, with the
normal class dominating (39.1%), followed by the
ischemic stroke class (35.3%), and the OOD
class (25.6%). This dataset structure is designed
to ensure the model can learn effectively from
each category while maintaining data
representation balance.

We acknowledge that relying on data from a
single hospital may limit the generalizability of the
results. This single-center design represents a
limitation that may affect the model's
performance when applied to different imaging
protocols, patient populations, or healthcare
settings. Future multi-center studies are
recommended to address this limitation. All
images were normalized to a resolution of
224x224 pixels for compatibility with the Swin
Transformer architecture and divided into 80%
training data (466 images) and 20% validation
data (117 images) using stratified sampling to
maintain a balanced class distribution [26].

B. Swin Transformer
Implementation

Architecture

Swin Transformer was chosen as the
backbone model due to its superior ability to
capture long-range dependencies through an
efficient computational shifted windows self-
attention mechanism [27]. This study uses the
pre-trained model “swin-tiny-patch4-window?7-
224" that has been trained on ImageNet as a
feature extractor.

Table 1. Dataset Composition

Number of Percen-

Class Images tage (%) Description
CT scan
Normal images of the
CT 228 39.1 brain without
Scan pathological
abnormalities.
CT scan
Ischemic images with
Stroke 206 35.3 indications of
CT Scan ischemic
stroke.
Random
Not a . for
Brain CT 149 256  |mages
Scan 00D .
detection.
Total 583 100
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network and expand
the receptive field

Figtire 1. Swin Transformer Architecture

The implemented Swin  Transformer
architecture consists of four main stages with
resolution gradually decreasing through patch
merging. Each stage alternately applies Window-
based Multi-head Self-Attention (W-MSA) and
Shifted Window-based Multi-head Self-Attention
(SW-MSA), enabling the model to efficiently
capture local and global features.

This hierarchical architecture enables multi-
scale feature extraction, which is essential for
medical image analysis. Figure 2 presents the
detailed integration architecture of the Swin
Transformer  with  the  Out-of-Distribution
detection module.

v
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Feature Extraction
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Figure 2. Detailed integration architecture of the Swin
Transformer with the Out-of-Distribution detection module

As illustrated in the figure, the OOD detection
module operates through a dual-pathway
approach to ensure reliable identification of
anomalous inputs. The first pathway, Feature-
based Detection, extracts feature
representations from the penultimate layer (one
before the last) of the Swin Transformer, then
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calculates anomaly scores using Mahalanobis
distance to measure how far an input deviates
from the known data distribution. Simultaneously,
the second pathway, Confidence-based
Detection, evaluates the final prediction scores of
the model and flags inputs whose values fall
below a confidence threshold that is dynamically
optimized based on validation data. In the final
stage, the Hybrid Decision Making process fuses
or combines the anomaly scores from the first
path with the confidence scores from the second
path to make a comprehensive final
determination of whether an input is In-
Distribution or Out-of-Distribution.

The mathematical formulation for self-
attention in  Swin Transformer is. The
mathematical formulation for self-attention in
Swin Transformer is [28] :

Attention(Q,K,V) = (SoftMaxF+ B) (1)

Here, Q denotes the query matrix, K represents
the key matrix, and V corresponds to the value
matrix used in the attention mechanism. The term
dyindicates the dimensionality of the key and
query vectors, which is employed as a scaling
factor to stabilize gradient magnitudes. The
expression KT refers to the transpose of the key
matrix, enabling the computation of similarity
scores between queries and keys via matrix
multiplication. The matrix B is a bias matrix that
can be incorporated to encode additional
structural or positional information into the
attention scores. Finally, the SoftMax function is
applied to the resulting scores to normalize them
into a probability distribution, ensuring that the
attention weights are non-negative and sum to
one.

C. Out-of-Distribution Detection Integration

The integration of the OOD detection module
was carried out by utilizing the “Not-Brain CT
Scan” class as a representative sample of the
out-of-domain distribution. This approach allows
the model to learn the characteristics that
distinguish valid brain CT scan images from
irrelevant inputs [29].

Forward Pass Model Swin Transformer
N + class 0 = Normal CT Scan

« class 1= Ischemic Stroke CT Scan
ive camera only) « class 2 = Not Brain CT Scan (OOD)

Upload File / Live Camera

Accapled as in-distibution Output ‘CT Scan Normal” or |
“CT Scan Ischemic Stroke” or “Not Brain CT Scan” e

2

/ Visualization & Logging Predict
/ Prediction label

sults are displayed with: /
score / Faise

Class fd ooD(d ch class prediction)
Output: “Unks (LwC iden ce)"

Figure 3. Out-of-Distribution Detection Integration
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The confidence threshold for OOD detection
is set based on an analysis of the probability
distribution of outputs in the validation set.
Images with confidence scores below the
threshold or those predicted as “Not-Brain CT
Scan” with high probability are classified as OOD
samples.

D. Training Configuration and Optimization
Strategy

The training configuration is meticulously
designed to optimize model performance while
preventing overfitting, accommodating diverse
hardware environments. To ensure flexibility and
adaptability to hardware availability, the training
device automatically selects CUDA (GPU) if
available. If not, training will switch to CPU with
appropriate optimization through PyTorch's built-
in acceleration feature. Training parameters are
selected based on best practices in pre-trained
model tuning for medical applications, with
relatively small batch sizes to accommodate the
memory limitations of standard hardware
devices. Table 2 presents the comprehensive
training hyperparameter configuration used in
this study.]

The experiment was conducted with a
systematic approach using a fixed training
duration of 20 epochs to ensure fair comparison
across all experimental conditions. This
approach provides consistent computational
budget and eliminates training duration as a
confounding factor in performance evaluation. A
series of data augmentation techniques was
applied to the training set, including random
rotation, image flipping, and brightness
adjustment to simulate various lighting
conditions. In line with standard practice, the
validation set was not subjected to augmentation
to ensure objective and consistent evaluation of
model performance [30].

Table 2. Training Hyperparameter Configuration
Parameter Value Justification
Balance between

Batch Size 16 gradient stability and
memory efficiency.
Learning Optimal for fine-tuning

Rate 0.0001 pre-trained models.

Optimizer ~ AdamW AQaptlve learning rate
with momentum.
Standard for medical

Tram/}/all 80%/20% image classification.
Split
Image 224 x Compatibility with

Resolution 224 Swin Transformer
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E. Robustness Testing Protocol Design

The comprehensive robustness testing
protocol is designed to validate the system's
performance under real-world clinical scenarios,
as detailed in our experimental framework. The
robustness testing protocol is designed to
simulate real-world scenarios where image
quality may vary depending on the shooting
conditions. Distance robustness testing is
performed by taking photos of a monitor screen
displaying CT scan images at distances of 10, 20,
30, 40, 50, 60, 70, 80, 90, and 100 cm using a
smartphone camera with consistent resolution,
while illumination robustness testing s
conducted under three lighting conditions: dim
lighting (ambient lighting), normal lighting
(standard room lighting), and bright lighting.
Lighting conditions are controlled using LED
lights with adjustable intensity and measured
using a light meter to ensure consistency in
testing conditions across all experimental
scenarios.

F. Evaluation Metrics and Statistical
Analysis

Model performance evaluation was
conducted comprehensively using standard
classification metrics such as accuracy,
precision, recall, and F1-score for per-class
performance analysis, as well as a confusion
matrix for additional details. For more in-depth
clinical validation, additional metrics such as Dice
Score were included to assess lesion
segmentation quality, false detection ratio (FDR)
for patient safety, and inference success rate for
real-time application readiness in clinical settings
[31, 32].

TP+ TN

Accuracy = ——r——no @
. . TP
Precision = TP+ FP ©)
Recall = —= @
TP + FN

Precision x Recall
F1—Score = 2 x—— "= " (5)

Precision + Recall

Dice Score = ——=" __ (6)

2 XTP + FP+FN

Throughout the training process, validation
loss and accuracy were continuously monitored
at each epoch to identify the optimal
convergence point, while model robustness
metrics were assessed through success rates

under various distance and lighting conditions,
ensuring strong environmental adaptation.
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lll. RESULT

A. Experimental Setup and Hardware
Configuration

All experiments were conducted on a system
with the following specifications: AMD Ryzen 3
5300U processor with Radeon Graphics 2.60
GHz, 8 GB RAM, and a V4L2 laptop camera for
live camera testing. Implementation of the model
using the PyTorch framework, with automatic
device selection that detects GPU (CUDA)
availability and switches to CPU if GPU is not
available. This hardware configuration was
chosen to represent standard computer
specifications commonly available in healthcare
facilities, ensuring the  feasibility  of
implementation in resource-limited environments
[33]. Training was conducted with real-time
monitoring of validation loss and accuracy for
each epoch. Training time varied depending on
the number of epochs 17 minutes (epoch 5), 24
minutes (epoch 10), 40 minutes (epoch 15), and
50 minutes (epoch 20), demonstrating sufficient
computational efficiency for practical
implementation.

B. Model Performance Analysis Across
Training Epochs

Model performance evaluation shows high
consistency in achieving optimal accuracy with a
stable convergence pattern. As shown in the
training graphs, the model reaches peak
performance efficiently. The optimal validation
accuracy of 99.15% was first achieved at epoch
8 during the 10-epoch training cycle, with
validation loss stabilizing at a low value of
0.0442, indicating effective and rapid model
training without significant signs of overfitting.

The learning curve analysis reveals optimal
convergence at epoch 10, with validation
accuracy reaching 99.15% and validation loss
stabilizing at 0.0442, indicating effective model
training without overfitting concerns. Table 3
presents the comprehensive performance
metrics including additional clinical validation
measures required for healthcare applications.

Convergence pattern analysis reveals that
the model achieves optimal performance in
relatively few epochs, indicating the
effectiveness of transfer learning from the pre-
trained Swin Transformer [34]. Figure 4 shows
the validation confusion matrix, demonstrating
excellent classification performance across all
classes with minimal misclassification. The
confusion matrix at the optimal epoch shows an
excellent distribution of model predictions with
minimal misclassification, especially for the OOD
detection class, which achieves perfect
precision.
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Figure 3. Training/Validation Graph Epho 5, 10, 15, and 20
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CT Scan for Ischemic Stroke

Normal Brain CT Scan

Not a Brain CT Scan 0 0

CT Scan for Ischemic Stroke
Normal Brain CT Scan
Not a Brain CT Scan

Predicted label

Figure 4. Validation Confusion Matrix

The validation confusion matrix visually
confirms the model's excellent classification
performance, with only one misclassification
error out of 117 validation samples. The sole
error was a single 'Normal Brain CT Scan' being
incorrectly identified as 'CT Scan for Ischemic
Stroke,' a type of error that is less critical than
missing a positive stroke case.

Per-class analysis reveals the strength of the
Out-of-Distribution mechanism. The “Not a Brain
CT Scan” class achieved perfect precision (1.00)
and recall (1.00), meaning no in-distribution
medical images were incorrectly flagged as
OOD, and all OOD images were successfully
detected and rejected. This perfect OOD
detection is critical for clinical safety, as it
prevents the system from making a diagnosis on
irrelevant data. The medical classes also
demonstrated excellent performance, with F1-
scores of 0.99, indicating a robust balance
between precision and recall.

Examples of diagnoses successfully
performed by the model demonstrate its
ability to identify various types of inputs with
high confidence scores, reflecting the
model's reliability in practical scenarios.

Table 3. Comprehensive Performance Metrics Across Best Epochs

Metric Value Clinical Theshold Status
Validation Accuracy 99.15% >90% Excellent
Training Time 24 min <2 hours Efficient
Validation Loss 0.0442 <0.2 Optimal
Precision 0.99 >0.90 Excellent
Recall 0.99 >0.90 Excellent
F1-Score 0.99 >0.90 Excellent
Dice Score 1.00 >0.90 Excellent
False Detection Ratio 0.85% <5% Acceptable
Inference Success Rate 99.15% >95% Excellent
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Table 4. Detailed Per-Class Performance Analysis (Epoch 10 - Optimal Performance)

Class Precision Recall F1-Score  Support ngﬁﬁle ng:fi?/e N:galaisle
Not a Brain CT Scan 1.00 1.00 1.00 30 30 0 0
sohemic Stroke CT- 0,98 1.00 0.99 41 41 1 0
Normal CT Scan 1.00 0.98 0.99 46 45 0 1

{4 Diagnosis Result: Normal Brain CT Scan
| Confidence Level: 85.87%

Uploaded Image: Normal Brain CT Scan

(a)

{4 Diagnosis Result: CT Scan for Ischemic Stroke
| Confidence Level: 87.32%

Uploaded Image: CT Scan for Ischemic Stroke

4 Diagnosis Result: Not a Brain CT Scan
| Confidence Level: 99.94%

Uploaded Image: Not a Brain CT Scan

(c)

Figure 5. Correct Diagnosis Results (a) Normal CT Scan, (b)
Ischemic Stroke CT Scan, (c) Not a Brain CT Scan

C. OOD Detection Effectiveness

The OOD detection module evaluation
showed very reliable performance with
perfect precision of 1.00 for the “Not Brain
CT Scan” class, meaning that none of the
valid medical images were misclassified as
OO0D [35].

Table 5. OOD Detection Performance et

Metric Value Interpretation
OO0D . I
Detection 100 % Perfect |d§nt]f|cat|on
A of non-CT brain images.

ccuracy
False No medical images
Positive 0% were misclassified as
Rate OO0D.

Threshold analysis revealed that the
model produced distinctly lower confidence
scores for OOD samples compared to in-
distribution medical images, with clear
separation and minimal overlap.

D. Multi-Dimensional Robustness
Evaluations

Robustness testing of distance using a
V4L2 laptop camera showed consistent
performance patterns with variations based
on class complexity. The “Ischemic Stroke”
class maintained a 70% success rate across
the entire distance range of 30-90 cm.

Table 6. Distance Robustness Results Summary

Distance

Not Brain

Range CT Scan Ischemic Normal CT

(cm) (%) Stroke (%) Scan (%)
10 £2(98.83%) X (98%) K (74.31%)
20 (97.58%) X (48.87%) XK (46.42%)
30 £2(99.11%) [4(80.10%) 2 (91.54%)
40 (95.50%) (96.44%) (85.18%)
50 2(85.04%) [(97.37%) 4 (70.01%)
60 (79.06%) (94.35%) XK (49.15%)
70 XK (50.37%) (90.38%) X (45.65%)
80 X (67.52%) [4(91.69%) K (73.51%)
90 X (53.38%) [4(71.46%) X (88.53%)
100 X (61.10%) X (46.61%) X (92.76%)
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The optimal zone for medical diagnosis is
in the range of 30-60 cm, where both medical
classes show reliable performance.
Degradation at extreme distances (>80 cm)
is attributed to a decrease in image clarity
and the loss of detailed features that are
crucial for diagnosis [36].

Dist: 10 cm
Actual: Normal Brain CT Scan
Pred: Not a Brain CT Scan (74.31%)

Dist: 50 cm
Actual: CT Scan for Ischemic Stroke
Pred: CT Scan for Ischemic Stroke (97.37%)

(b)

Dist: 100 cm
Actual: Not a Brain CT Scan
Pred: Unknown (Low Confidence) (61.10%)

Figure 6. Distance Test Results (a) non-CT scan class at a
distance of 10 cm, (b) ischemic stroke class at a distance of
50 cm, (c) normal CT scan class at a distance of 100 cm

Table 7. lllumination Robustness Comprehensive Results

The robustness evaluation of lighting
demonstrated exceptional stability with a
success rate of 100% for all classes under
dim, normal, and bright lighting conditions.
These results indicate that  the
preprocessing normalization and robust
feature extraction of Swin Transformer
effectively mitigate illumination variations.

Condition: Dim Light
Actual: Not a Brain CT Scan
Pred: Not a Brain CT Scan (74.29%)

(a)
Condition: Normal Light
Actual: Normal Brain CT Scan
Pred: Normal Brain CT Scan (95.33%)

Figure 7. Light Testing Results (a) dim light conditions, non-
CT scan class, (b) normal light conditions, normal CT scan
class, (c) bright light conditions, ischemic stroke CT scan
class

Lighting Condition Not Brain Stroke Normal CT Scan Confidence Score
CT Scan(%) Ischemic (%) (%) Range
Dim Light (82.89%) (97.37%) (74.29%) 0.74-0.97
Normal Light (95.33%) (93.07%) (97.04%) 0.93-0.97
Bright Light (96.58%) (86.74%) (96.13%) 0.86 — 0.96
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Table 8. Live Camera Testing Results

Test Scenario Bukan CT CT Scan Normal Confidence Score
Scan (%) Ischemic (%) (%) Range
Printed CT Scan Photos 0.86 — 0.98

-- Captured Image Analysis ---
%4 Diagnosis Result: Normal Brain CT Scan
J Confidence Level: 87.98%

Captured: Normal Brain CT Scan

(a)

-- Captured Image Analysis ---
Diagnosis Result: CT Scan for Ischemic Stroke
| Confidence Level: 86.60%

Captured: CT Scan for Ischemic Stroke

-- Captured Image Analysis ---
[%4 Diagnosis Result: Not a Brain CT Scan
J Confidence Level: 98.26%

Captured: Not a Brain CT Scan

(c)

Figure 8. Results of trials using live cameras (a) normal class,
(b) ischemic stroke class, (c) non-CT scan class.

E. Real-world Application Validation

Live camera testing using a V4L2 laptop
camera demonstrated the model's real-time
capabilities with an average inference time of 0.3
seconds per image. Testing was conducted with

live capture from a monitor screen, simulating a
scenario in which medical personnel use a
smartphone or laptop camera for rapid diagnostic
consultation.

Consistency in confidence scores across
different lighting conditions indicates that the
model has developed a robust internal
representation that is not affected by
changes in lighting. Live camera testing results
demonstrate the model's ability to operate in real-
time conditions with high maintained accuracy,
confirming its practical viability for teleradiology
applications and remote consultation.

Table 9. Error Pattern Distribution Analysis

Percent. Primary
Error Type Freq. (%) Cause
Normal is aSr;Ji?aJ\[:gs
misclassified as 1 100% .
Stroke resembling
pathology.
. No
Stroke Ischemic . -
misclassified as 0 0% mlﬁclassm
Normal cation
occurred.
No
Medical image as o misclassifi
Oo0oD 0 0% cation
occurred.

Comprehensive error analysis identifies the
main failure modes associated with edge cases
where pathological features are not clearly visible
or overlap with normal anatomical variations.
Most errors occur in boundary cases where
subtle indicators of ischemic stroke require
interpretation by an expert radiologist.

Error pattern analysis shows that most
classification errors occur in scenarios that are
challenging even for experienced radiologists,
indicating that the model's performance is
consistent with the expected variability of human
experts in ambiguous cases [37].

F. Comparative Analysis with Baseline
Methods

To validate the superiority of the
proposed architecture, the study conducted
a comparison with conventional CNN
baseline methods and ResNet-50 using
identical datasets and configurations.

Swin Transformer showed an accuracy
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improvement of 9.41% compared to CNN
and 2.57% compared to ResNet-50,
confirming the effectiveness of the attention
mechanism and hierarchical feature
learning. This substantial performance gap,
particularly with the CNN, underscores the
architectural advantage of the Swin
Transformer. lts self-attention mechanism
and hierarchical structure are better suited
for capturing the global, long-range
dependencies within an image, which are
crucial for identifying complex pathological
patterns in CT scans.

100%
60%
80%

20%

Vallatiicon Acurracy (%)

89.74%

Swin Transformer ResNet-50 Conventional CNN

Figure 9. Model Accuracy Comparison Chart

IV. DISCUSSION

The validation accuracy of 99.15% at epoch
10 demonstrates stable convergence toward
optimal performance, exceeding the clinical
acceptability threshold of 90-95% for medical Al
systems. The consistency of accuracy across
multiple training epochs indicates optimal
convergence without overfitting, a characteristic
that is crucial for generalization on unseen
clinical data. Perfect precision (1.00) for the
“Non-Brain CT Scan” class indicates that the
model never misclassifies medical images as
non-medical, maintaining diagnostic integrity.
Computational efficiency with training time of 17—
50 minutes on standard hardware and inference
time of 0.3 seconds per image meets real-time
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requirements for emergency  diagnostic
scenarios where rapid decision-making can
significantly impact patient outcomes.

Achieving a 100% success rate in
illumination robustness testing demonstrates
exceptional adaptability to environmental
variations commonly encountered in clinical
environments, particularly  significant  for
emergency departments and resource-limited
settings where optimal lighting conditions are not
always available.

Robustness testing revealed different optimal
performance zones for each class “Ischemic
Stroke” achieved 71%-97% in the 30-90 cm
range, while “Normal CT Scan” achieved 30%-
91% in the 30-50 cm range. Live camera testing
validation confirms practical viability for point-of-
care applications and remote consultation
scenarios with success rates >70% across
different capture methods, demonstrating
adaptability to various consultation modalities in
telehealth implementations. The integration of an
OOD detection mechanism represents a
paradigm shift in medical Al safety, addressing a
critical gap in current diagnostic systems prone to
confident misclassification on inappropriate
inputs. Perfect OOD detection performance
(100% accuracy, 0% false positive rate) indicates
that the model possesses “self-awareness” to
recognize limitations and reject unsuitable inputs.

Error pattern analysis shows that most
classification errors occur in challenging
borderline cases, even for experienced
radiologists, indicating that model performance is
in line with the expected variability of human
experts. Validation of the dataset using real data
from Labuang Baji Regional General Hospital
ensures relevance to the Indonesian population,
addressing an important consideration in the
application of medical artificial intelligence.
Implementation readiness is demonstrated
through moderate hardware requirements and
the ability to operate on standard laptop
hardware with reasonable inference times,
making this solution accessible to a wide range
of healthcare facilities, from large hospitals to
rural clinics with limited computing resources.

Table 10. Comprehensive Performance Comparison Across Different Architectures

Method Valldatlo(r:’/ol)\ccuracy Precision Recall F1-Score TI::}I:\?n)
Swin Transformer 99.15 0.99 0.99 24
CNN 89.74 0.90 0.90 4
ResNet-50 96.58 0.97 0.97 19
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V.CONCLUSSION

This study successfully developed an
ischemic stroke diagnosis system based on Swin
Transformer integrated with an  Out-of-
Distribution detection mechanism specifically
designed for stroke diagnosis from CT images,
achieving an optimal validation accuracy of
99.15% with exceptional robustness in real-world
conditions. The implementation of a hybrid
architecture demonstrates superior capability in
classifying brain CT scan images with perfect
OOD detection (100% success rate), ensuring
diagnostic safety by rejecting irrelevant inputs.
Comprehensive  clinical  validation  using
additional metrics Dice Score (1.00), False
Detection Ratio (0.85%), Inference Success Rate
(99.15%) confirms the system's readiness for
clinical deployment. Multi-dimensional
robustness evaluation confirmed the model's
reliability with a 100% success rate across
lighting variations and optimal performance
within a 30-60 cm distance range, making it
suitable for teleradiology applications. Validation
using an indigenous dataset from Labuang Baiji
General Hospital ensures relevance to the
Indonesian  demographic  context,  while
computational efficiency on standard hardware
with an inference time of 0.3 seconds confirms
the feasibility of implementation across various
healthcare settings.

The significant contribution of this
research lies in the successful integration of
cutting-edge Vision Transformer technology with
essential safety mechanisms specifically tailored
for stroke diagnosis applications, creating a
clinically validated solution for accurate, reliable,
and safe diagnosis of ischemic stroke. The
developed model is ready to support clinical
decision-making in various scenarios, from
emergency rooms to rural clinics, with the
potential to enhance diagnostic consistency and
reduce the workload of radiologists. Future
research directions will focus on multi-center
validation studies to address the single-institution
limitation, integration with hospital information
systems for seamless clinical workflow,
development of explainable Al features to
enhance clinical adoption and trust, and
expansion of the dataset to include additional
stroke subtypes and pathological conditions.
With performance exceeding clinical acceptance
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thresholds and comprehensive robustness
validation, this system represents a significant
step forward in automated medical diagnosis that
could have a meaningful impact on the quality of
healthcare services in Indonesia.
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