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Abstract 
Diagnosing ischemic stroke from CT scan images presents significant challenges in achieving the speed 

and accuracy essential for clinical decision-making, where conventional CNN-based methods show 
limitations. This study addresses these gaps by developing an automated diagnostic system using a Swin 
Transformer model integrated with an Out-of-Distribution (OOD) detection mechanism to enhance diagnostic 
reliability. The model was trained and validated on a dataset of 583 brain CT images from 341 patients at a 
regional hospital in Makassar. This dataset, labeled by two expert radiologists (κ=0.94), was categorized into 
ischemic stroke (206), normal (228), and non-brain CT scans (149) as the OOD class. The Swin Transformer 
achieved an exceptional validation accuracy of 99.15% after 10 epochs, with a highly efficient total training 
time of approximately 24 minutes. The model’s superiority was further confirmed by high weighted averages 
for precision (0.99), recall (0.99), and F1-score (0.99). Critically, the OOD detection module demonstrated 
perfect performance, achieving 100% accuracy in identifying irrelevant images with a 0% false positive rate, 
thereby preventing erroneous diagnoses from non-brain scans. Robustness testing under varied lighting 
conditions also showed a 100% success rate. Real-time viability was confirmed through external validation 
using a live camera, yielding a rapid inference time of 0.3 seconds per image. This study concludes that the 
developed system offers a highly accurate, robust, and safe solution, proving its readiness for clinical 
implementation to support ischemic stroke diagnosis in Indonesia. 

 
Keywords: CT scan, Ischemic Stroke Diagnosis, Medical Image Analysis, Out-of-Distribution Detection, 
Robustness Evaluation, Swin Transformer. 

 
Received: 16-08-2025 | Accepted: 10-10-2025 | Available Online: 30-11-2025 

DOI: https://doi.org/10.23887/janapati.v14i3.102864 
 

I. INTRODUCTION 
Ischemic stroke is one of the leading causes 

of death and neurological disability worldwide, 
with its increasing prevalence placing a 
significant burden on global health systems [1, 2]. 
Early detection and accurate diagnosis are key to 
preventing long-term neurological effects, where 
medical imaging, particularly Computed 
Tomography (CT) scans, play a vital role as the 
gold standard in identifying acute vascular 
abnormalities in the brain [3, 4]. Speed in 
diagnosis is crucial, as delays can be fatal for 
patients [5]. The ability to quickly distinguish 
between ischemic stroke and normal conditions 
from CT scan images is a key foundation in the 
clinical management of head injuries in the 
emergency department. [6]. 

However, the current diagnostic process 
still faces fundamental challenges centred on 

manual interpretation by radiologists. These 
limitations include extreme workloads, visual 
fatigue, and variability in interpretation between 
radiologists, which can be influenced by 
experience levels and other subjective factors [7, 
8]. The urgent need for an automated and reliable 
clinical decision support system is increasingly 
evident to enhance diagnostic consistency, 
accuracy, and efficiency [9]. These automation 
efforts are expected not only to streamline 
radiology workflows but also to provide an 
objective “second pair of eyes” to minimize the 
risk of diagnostic errors in critical cases [10,11]. 

With advances in technology, artificial 
intelligence, particularly deep learning, has 
shown revolutionary potential in medical image 
analysis [12]. Convolutional Neural Networks 
(CNN) models initially dominated research in this 
field and demonstrated impressive performance 
[13]. However, CNN architectures have inherent 
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limitations, such as a bias toward local texture 
features and difficulty in capturing distant 
contextual dependencies within an image, which 
are crucial for understanding complex 
pathological abnormalities in brain CT scans [14, 
15]. These limitations have driven the emergence 
of new Transformer-based architectures, such as 
Vision Transformer (ViT) and Swin Transformer, 
which have proven superior in modeling global 
relationships through self-attention mechanisms 
[16, 17]. 

Another crucial but often overlooked 
challenge in AI-based medical diagnosis systems 
is the ability to handle Out-of-Distribution (OOD) 
data inputs. In a clinical context, diagnosis 
systems must be able to identify and reject 
irrelevant images or those outside the training 
domain, such as CT scans of other organs or 
non-medical images [18, 19]. The inability to 
detect OOD can lead to fatal misdiagnoses, 
where the system provides incorrect predictions 
with high confidence levels for inputs that should 
be rejected [20]. Multi-dimensional robustness 
testing is also required to simulate real-world 
conditions, including variations in image 
acquisition distance and different lighting 
conditions [21- 23]. 

To address these challenges, this study 
proposes an innovation by integrating the 
advanced Swin Transformer architecture with an 
Out-of-Distribution (OOD) detection module 
specifically designed for ischemic stroke 
diagnosis from CT scan images. While similar 
architectures have been explored in other 
domains, this represents the first implementation 
combining Swin Transformer with OOD detection 
specifically tailored for stroke diagnosis, 
incorporating domain-specific features and 
clinical validation requirements. This integration 
is the first of its kind to be implemented for 
ischemic stroke diagnosis from CT scan images, 
creating a system that is not only accurate but 
also safe. The OOD capability enables the model 
to identify and reject irrelevant inputs (e.g., 
abdominal CT scan images or facial photos), a 
critical safety feature often overlooked in clinical 
artificial intelligence models and serves to 
prevent fatal misdiagnoses due to data input 
errors. 

Another unique contribution of this study is 
the use and validation of the model on an 
indigenous dataset obtained directly from a local 
medical center in Indonesia, namely RSUD 
Labuang Baji, Makassar. Validation on this 
specific population dataset ensures that the 
developed model has real relevance and clinical 
application for the Indonesian demographic 
context, an important step that is often 
overlooked in medical artificial intelligence 

research, which predominantly uses data from 
Western populations [24]. The model's readiness 
for implementation is also demonstrated through 
live camera testing, which simulates the 
diagnostic workflow in real-time. 

Thus, the main objective of this study is to 
design, implement, and validate an accurate, 
robust, and safe Swin Transformer-based 
concussion diagnosis system that can improve 
the quality of healthcare services in Indonesia, 
especially in areas with limited radiologists. The 
main contributions of this paper are the 
introduction of a hybrid Swin Transformer 
architecture with OOD detection for head CT 
scan diagnosis, performance validation using 
clinically relevant local datasets, and 
demonstration of model robustness through a 
comprehensive distance and light robustness 
testing framework. Through a series of rigorous 
experiments, we demonstrate that the proposed 
system is ready to support more reliable and 
efficient clinical decision-making [25]. 

II. METHODOLOGY 
A. Dataset Acquisition and Characteristic 

This study used a dataset of brain CT scan 
images obtained from Labuang Baji Regional 
General Hospital, Makassar, with ethical 
approval from the hospital's ethics committee. 
The dataset collection was supervised by the 
Head of Radiology Department and coordinated 
by the hospital's medical imaging team. 

The dataset comprises images from 341 
unique patients with the following demographic 
characteristics 186 male patients (54.5%) and 
155 female patients (45.5%), with ages ranging 
from 35 to 82 years (mean age 62.4 ± 12.8 
years). To ensure data quality and minimize 
patient-specific bias, a maximum of 3 CT slices 
per patient were included in the dataset, with an 
average of 1.7 images per patient. 

Ground truth labeling was performed through 
a rigorous process involving two certified 
radiologists with over 10 years of experience in 
neuroimaging. Initial labeling was conducted 
independently by each radiologist, followed by 
consensus meetings for discordant cases. Inter-
rater agreement was assessed using Cohen's 
kappa coefficient, achieving κ = 0.94, indicating 
excellent agreement. For quality assurance, 10% 
of randomly selected cases were re-evaluated by 
a third independent radiologist, achieving 98.3% 
concordance with the consensus labels. 

The dataset consists of three classes 
designed to accommodate classification and 
Out-of-Distribution (OOD) detection needs: 
normal CT scans with 228 images, ischemic 
stroke CT scans with 206 images, and non-brain 
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CT scans with 149 random images serving as the 
OOD detection class. The non-brain CT scans 
included abdominal CT (45 images), chest CT 
(38 images), pelvic CT (33 images), and 
miscellaneous medical images (33 images) to 
simulate real-world scenarios where irrelevant 
images might be accidentally input into the 
diagnostic system. The dataset composition 
shows a relatively balanced distribution, with the 
normal class dominating (39.1%), followed by the 
ischemic stroke class (35.3%), and the OOD 
class (25.6%). This dataset structure is designed 
to ensure the model can learn effectively from 
each category while maintaining data 
representation balance. 

We acknowledge that relying on data from a 
single hospital may limit the generalizability of the 
results. This single-center design represents a 
limitation that may affect the model's 
performance when applied to different imaging 
protocols, patient populations, or healthcare 
settings. Future multi-center studies are 
recommended to address this limitation. All 
images were normalized to a resolution of 
224×224 pixels for compatibility with the Swin 
Transformer architecture and divided into 80% 
training data (466 images) and 20% validation 
data (117 images) using stratified sampling to 
maintain a balanced class distribution [26]. 

B. Swin Transformer Architecture 
Implementation 

Swin Transformer was chosen as the 
backbone model due to its superior ability to 
capture long-range dependencies through an 
efficient computational shifted windows self-
attention mechanism [27]. This study uses the 
pre-trained model “swin-tiny-patch4-window7-
224” that has been trained on ImageNet as a 
feature extractor.  

 
Table 1. Dataset Composition 

Class Number of 
Images 

Percen-
tage (%) Description 

Normal 
CT 

Scan 
228 39.1 

CT scan 
images of the 
brain without 
pathological 
abnormalities. 

Ischemic 
Stroke 

CT Scan  
206 35.3  

CT scan 
images with 
indications of 
ischemic 
stroke. 

Not a 
Brain CT 

Scan 
149 25.6 

Random 
images for 
OOD 
detection. 

Total 583 100  
 

 
Figure 1. Swin Transformer Architecture 
 

The implemented Swin Transformer 
architecture consists of four main stages with 
resolution gradually decreasing through patch 
merging. Each stage alternately applies Window-
based Multi-head Self-Attention (W-MSA) and 
Shifted Window-based Multi-head Self-Attention 
(SW-MSA), enabling the model to efficiently 
capture local and global features. 

This hierarchical architecture enables multi-
scale feature extraction, which is essential for 
medical image analysis. Figure 2 presents the 
detailed integration architecture of the Swin 
Transformer with the Out-of-Distribution 
detection module. 

 

 
Figure 2. Detailed integration architecture of the Swin 
Transformer with the Out-of-Distribution detection module 

 
As illustrated in the figure, the OOD detection 

module operates through a dual-pathway 
approach to ensure reliable identification of 
anomalous inputs. The first pathway, Feature-
based Detection, extracts feature 
representations from the penultimate layer (one 
before the last) of the Swin Transformer, then 
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calculates anomaly scores using Mahalanobis 
distance to measure how far an input deviates 
from the known data distribution. Simultaneously, 
the second pathway, Confidence-based 
Detection, evaluates the final prediction scores of 
the model and flags inputs whose values fall 
below a confidence threshold that is dynamically 
optimized based on validation data. In the final 
stage, the Hybrid Decision Making process fuses 
or combines the anomaly scores from the first 
path with the confidence scores from the second 
path to make a comprehensive final 
determination of whether an input is In-
Distribution or Out-of-Distribution. 

The mathematical formulation for self-
attention in Swin Transformer is. The 
mathematical formulation for self-attention in 
Swin Transformer is [28] : 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲, 𝑽) = .𝑆𝑜𝑓𝑡𝑀𝑎𝑥 𝑸𝑲

!

#$"
+𝑩6 (1) 

 
Here, Q denotes the query matrix, K represents 
the key matrix, and V corresponds to the value 
matrix used in the attention mechanism. The term 
𝑑%indicates the dimensionality of the key and 
query vectors, which is employed as a scaling 
factor to stabilize gradient magnitudes. The 
expression 𝑲𝑻	refers to the transpose of the key 
matrix, enabling the computation of similarity 
scores between queries and keys via matrix 
multiplication. The matrix B is a bias matrix that 
can be incorporated to encode additional 
structural or positional information into the 
attention scores. Finally, the SoftMax function is 
applied to the resulting scores to normalize them 
into a probability distribution, ensuring that the 
attention weights are non-negative and sum to 
one. 

C. Out-of-Distribution Detection Integration 
The integration of the OOD detection module 

was carried out by utilizing the “Not-Brain CT 
Scan” class as a representative sample of the 
out-of-domain distribution. This approach allows 
the model to learn the characteristics that 
distinguish valid brain CT scan images from 
irrelevant inputs [29]. 

 

 
Figure 3. Out-of-Distribution Detection Integration 
 

The confidence threshold for OOD detection 
is set based on an analysis of the probability 
distribution of outputs in the validation set. 
Images with confidence scores below the 
threshold or those predicted as “Not-Brain CT 
Scan” with high probability are classified as OOD 
samples. 

D. Training Configuration and Optimization 
Strategy 

The training configuration is meticulously 
designed to optimize model performance while 
preventing overfitting, accommodating diverse 
hardware environments. To ensure flexibility and 
adaptability to hardware availability, the training 
device automatically selects CUDA (GPU) if 
available. If not, training will switch to CPU with 
appropriate optimization through PyTorch's built-
in acceleration feature. Training parameters are 
selected based on best practices in pre-trained 
model tuning for medical applications, with 
relatively small batch sizes to accommodate the 
memory limitations of standard hardware 
devices. Table 2 presents the comprehensive 
training hyperparameter configuration used in 
this study.] 

The experiment was conducted with a 
systematic approach using a fixed training 
duration of 20 epochs to ensure fair comparison 
across all experimental conditions. This 
approach provides consistent computational 
budget and eliminates training duration as a 
confounding factor in performance evaluation. A 
series of data augmentation techniques was 
applied to the training set, including random 
rotation, image flipping, and brightness 
adjustment to simulate various lighting 
conditions. In line with standard practice, the 
validation set was not subjected to augmentation 
to ensure objective and consistent evaluation of 
model performance [30]. 

 
Table 2. Training Hyperparameter Configuration 

Parameter Value Justification 

Batch Size 16 
Balance between 
gradient stability and 
memory efficiency.  

Learning 
Rate 0.0001 Optimal for fine-tuning 

pre-trained models.  
Optimizer AdamW Adaptive learning rate 

with momentum.  
Train/Vall 

Split 80%/20% 
Standard for medical 
image classification. 
 

Image 
Resolution 

224 x 
224 

Compatibility with 
Swin Transformer 
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E. Robustness Testing Protocol Design 
The comprehensive robustness testing 

protocol is designed to validate the system's 
performance under real-world clinical scenarios, 
as detailed in our experimental framework.  The 
robustness testing protocol is designed to 
simulate real-world scenarios where image 
quality may vary depending on the shooting 
conditions. Distance robustness testing is 
performed by taking photos of a monitor screen 
displaying CT scan images at distances of 10, 20, 
30, 40, 50, 60, 70, 80, 90, and 100 cm using a 
smartphone camera with consistent resolution, 
while illumination robustness testing is 
conducted under three lighting conditions: dim 
lighting (ambient lighting), normal lighting 
(standard room lighting), and bright lighting. 
Lighting conditions are controlled using LED 
lights with adjustable intensity and measured 
using a light meter to ensure consistency in 
testing conditions across all experimental 
scenarios. 

F. Evaluation Metrics and Statistical 
Analysis 

Model performance evaluation was 
conducted comprehensively using standard 
classification metrics such as accuracy, 
precision, recall, and F1-score for per-class 
performance analysis, as well as a confusion 
matrix for additional details. For more in-depth 
clinical validation, additional metrics such as Dice 
Score were included to assess lesion 
segmentation quality, false detection ratio (FDR) 
for patient safety, and inference success rate for 
real-time application readiness in clinical settings 
[31, 32].  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = '()	'+

'()'+)	,(),+	
 (2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = '(

'(	)	,(	
 (3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = '(

'(	)	,+	
 (4) 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2	x (-./01023		4		5./677

(-./01023	)			5./677	
 (5) 

 
𝐷𝑖𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 = 8	4	'(

8		4	'(	)	,(),+	
 (6) 

 
Throughout the training process, validation 

loss and accuracy were continuously monitored 
at each epoch to identify the optimal 
convergence point, while model robustness 
metrics were assessed through success rates 
under various distance and lighting conditions, 
ensuring strong environmental adaptation. 

III. RESULT 
A. Experimental Setup and Hardware 

Configuration 
All experiments were conducted on a system 

with the following specifications: AMD Ryzen 3 
5300U processor with Radeon Graphics 2.60 
GHz, 8 GB RAM, and a V4L2 laptop camera for 
live camera testing. Implementation of the model 
using the PyTorch framework, with automatic 
device selection that detects GPU (CUDA) 
availability and switches to CPU if GPU is not 
available. This hardware configuration was 
chosen to represent standard computer 
specifications commonly available in healthcare 
facilities, ensuring the feasibility of 
implementation in resource-limited environments 
[33]. Training was conducted with real-time 
monitoring of validation loss and accuracy for 
each epoch. Training time varied depending on 
the number of epochs 17 minutes (epoch 5), 24 
minutes (epoch 10), 40 minutes (epoch 15), and 
50 minutes (epoch 20), demonstrating sufficient 
computational efficiency for practical 
implementation. 

B. Model Performance Analysis Across 
Training Epochs 

Model performance evaluation shows high 
consistency in achieving optimal accuracy with a 
stable convergence pattern. As shown in the 
training graphs, the model reaches peak 
performance efficiently. The optimal validation 
accuracy of 99.15% was first achieved at epoch 
8 during the 10-epoch training cycle, with 
validation loss stabilizing at a low value of 
0.0442, indicating effective and rapid model 
training without significant signs of overfitting.  

The learning curve analysis reveals optimal 
convergence at epoch 10, with validation 
accuracy reaching 99.15% and validation loss 
stabilizing at 0.0442, indicating effective model 
training without overfitting concerns. Table 3 
presents the comprehensive performance 
metrics including additional clinical validation 
measures required for healthcare applications. 

Convergence pattern analysis reveals that 
the model achieves optimal performance in 
relatively few epochs, indicating the 
effectiveness of transfer learning from the pre-
trained Swin Transformer [34]. Figure 4 shows 
the validation confusion matrix, demonstrating 
excellent classification performance across all 
classes with minimal misclassification. The 
confusion matrix at the optimal epoch shows an 
excellent distribution of model predictions with 
minimal misclassification, especially for the OOD 
detection class, which achieves perfect 
precision. 
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Figure 3. Training/Validation Graph Epho 5, 10, 15, and 20 

 

 
Figure 4. Validation Confusion Matrix 

 
The validation confusion matrix visually 

confirms the model's excellent classification 
performance, with only one misclassification 
error out of 117 validation samples. The sole 
error was a single 'Normal Brain CT Scan' being 
incorrectly identified as 'CT Scan for Ischemic 
Stroke,' a type of error that is less critical than 
missing a positive stroke case. 

Per-class analysis reveals the strength of the 
Out-of-Distribution mechanism. The “Not a Brain 
CT Scan” class achieved perfect precision (1.00) 
and recall (1.00), meaning no in-distribution 
medical images were incorrectly flagged as 
OOD, and all OOD images were successfully 
detected and rejected. This perfect OOD 
detection is critical for clinical safety, as it 
prevents the system from making a diagnosis on 
irrelevant data. The medical classes also 
demonstrated excellent performance, with F1-
scores of 0.99, indicating a robust balance 
between precision and recall. 

Examples of diagnoses successfully 
performed by the model demonstrate its 
ability to identify various types of inputs with 
high confidence scores, reflecting the 
model's reliability in practical scenarios. 

 

Table 3. Comprehensive Performance Metrics Across Best Epochs 

Metric Value Clinical Theshold Status 
Validation Accuracy 99.15% >90% 
"# Excellent 
Training Time 24 min <2 hours 
"# Efficient 
Validation Loss 0.0442 <0.2 
"# Optimal 
Precision 0.99 >0.90 
"# Excellent 
Recall 0.99 >0.90 
"# Excellent 
F1-Score 0.99 >0.90 
"# Excellent 
Dice Score 1.00 >0.90 
"# Excellent 
False Detection Ratio 0.85% <5% 
"# Acceptable 
Inference Success Rate 99.15% >95% 
"# Excellent 
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Table 4. Detailed Per-Class Performance Analysis (Epoch 10 - Optimal Performance) 

Class Precision Recall F1-Score Support True 
Positive 

False 
Positive 

False 
Negative 

Not a Brain CT Scan  1.00 1.00 1.00 30 30 0 0 
Ischemic Stroke CT 
Scan 0.98 1.00 0.99 41 41 1 0 

Normal CT Scan 1.00 0.98 0.99 46 45 0 1 
 

 
(a) 

 

 
(b) 
 

 
(c) 

 
Figure 5. Correct Diagnosis Results (a) Normal CT Scan, (b) 
Ischemic Stroke CT Scan, (c) Not a Brain CT Scan 
 

C. OOD Detection Effectiveness 

The OOD detection module evaluation 
showed very reliable performance with 
perfect precision of 1.00 for the “Not Brain 
CT Scan” class, meaning that none of the 
valid medical images were misclassified as 
OOD [35]. 

 
Table 5. OOD Detection Performance et 

Metric Value Interpretation 
OOD 

Detection 
Accuracy 

100 % Perfect identification 
of non-CT brain images. 

False 
Positive 

Rate 
0 % 

No medical images 
were misclassified as 

OOD. 
 
Threshold analysis revealed that the 

model produced distinctly lower confidence 
scores for OOD samples compared to in-
distribution medical images, with clear 
separation and minimal overlap. 
D. Multi-Dimensional Robustness 

Evaluations 

Robustness testing of distance using a 
V4L2 laptop camera showed consistent 
performance patterns with variations based 
on class complexity. The “Ischemic Stroke” 
class maintained a 70% success rate across 
the entire distance range of 30-90 cm. 

 
Table 6. Distance Robustness Results Summary 

Distance 
Range 
(cm) 

Not Brain 
CT Scan 

(%) 
Ischemic 

Stroke (%) 
Normal CT 
Scan (%) 

10  
"#(98.83%) 
$(98%) 
$(74.31%) 
20 
"#(97.58%) 
$(48.87%) 
$(46.42%) 
30 
"#(99.11%) 
"#(80.10%) 
"#(91.54%) 
40 
"#(95.50%) 
"#(96.44%) 
"#(85.18%) 
50 
"#(85.04%) 
"#(97.37%) 
"#(70.01%) 
60 
"#(79.06%) 
"#(94.35%) 
$(49.15%) 
70 
$(50.37%) 
"#(90.38%) 
$(45.65%) 
80 
$(67.52%) 
"#(91.69%) 
$(73.51%) 
90 
$(53.38%) 
"#(71.46%) 
$(88.53%) 
100 
$(61.10%) 
$(46.61%) 
$(92.76%) 
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The optimal zone for medical diagnosis is 
in the range of 30-60 cm, where both medical 
classes show reliable performance. 
Degradation at extreme distances (>80 cm) 
is attributed to a decrease in image clarity 
and the loss of detailed features that are 
crucial for diagnosis [36]. 

 

 
(a) 

 
(b) 

 
Figure 6. Distance Test Results (a) non-CT scan class at a 
distance of 10 cm, (b) ischemic stroke class at a distance of 
50 cm, (c) normal CT scan class at a distance of 100 cm 

The robustness evaluation of lighting 
demonstrated exceptional stability with a 
success rate of 100% for all classes under 
dim, normal, and bright lighting conditions. 
These results indicate that the 
preprocessing normalization and robust 
feature extraction of Swin Transformer 
effectively mitigate illumination variations. 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 7. Light Testing Results (a) dim light conditions, non-
CT scan class, (b) normal light conditions, normal CT scan 
class, (c) bright light conditions, ischemic stroke CT scan 
class

 

Table 7. Illumination Robustness Comprehensive Results 

Lighting Condition Not Brain 
CT Scan(%) 

Stroke 
Ischemic (%) 

Normal CT Scan 
(%) 

Confidence Score 
Range 

Dim Light 
"#(82.89%) 
"#(97.37%) 
"#(74.29%) 0.74 – 0.97 
Normal Light 
"#(95.33%) 
"#(93.07%) 
"#(97.04%) 0.93 – 0.97 
Bright Light 
"#(96.58%) 
"#(86.74%) 
"#(96.13%) 0.86 – 0.96 
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Table 8. Live Camera Testing Results 

Test Scenario Bukan CT 
Scan (%) 

Stroke 
Ischemic (%) 

CT Scan Normal 
(%) 

Confidence Score 
Range 

Printed CT Scan Photos 
"# 
"# 
"# 0.86 – 0.98  
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 8. Results of trials using live cameras (a) normal class, 
(b) ischemic stroke class, (c) non-CT scan class. 

E. Real-world Application Validation 
Live camera testing using a V4L2 laptop 

camera demonstrated the model's real-time 
capabilities with an average inference time of 0.3 
seconds per image. Testing was conducted with 

live capture from a monitor screen, simulating a 
scenario in which medical personnel use a 
smartphone or laptop camera for rapid diagnostic 
consultation. 

Consistency in confidence scores across 
different lighting conditions indicates that the 
model has developed a robust internal 
representation that is not affected by 
changes in lighting. Live camera testing results 
demonstrate the model's ability to operate in real-
time conditions with high maintained accuracy, 
confirming its practical viability for teleradiology 
applications and remote consultation. 
 
Table 9. Error Pattern Distribution Analysis 

Error Type Freq. Percent. 
(%) 

Primary 
Cause 

Normal is 
misclassified as 
Stroke  

1 100% 

Subtle 
artifacts 
resembling 
pathology. 

Stroke Ischemic 
misclassified as 
Normal 

0 0% 

No 
misclassifi
cation 
occurred. 

Medical image as 
OOD 0 0% 

No 
misclassifi
cation 
occurred. 

 
Comprehensive error analysis identifies the 

main failure modes associated with edge cases 
where pathological features are not clearly visible 
or overlap with normal anatomical variations. 
Most errors occur in boundary cases where 
subtle indicators of ischemic stroke require 
interpretation by an expert radiologist. 

Error pattern analysis shows that most 
classification errors occur in scenarios that are 
challenging even for experienced radiologists, 
indicating that the model's performance is 
consistent with the expected variability of human 
experts in ambiguous cases [37]. 

 

F. Comparative Analysis with Baseline 
Methods 

To validate the superiority of the 
proposed architecture, the study conducted 
a comparison with conventional CNN 
baseline methods and ResNet-50 using 
identical datasets and configurations. 

Swin Transformer showed an accuracy 
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improvement of 9.41% compared to CNN 
and 2.57% compared to ResNet-50, 
confirming the effectiveness of the attention 
mechanism and hierarchical feature 
learning. This substantial performance gap, 
particularly with the CNN, underscores the 
architectural advantage of the Swin 
Transformer. Its self-attention mechanism 
and hierarchical structure are better suited 
for capturing the global, long-range 
dependencies within an image, which are 
crucial for identifying complex pathological 
patterns in CT scans. 

 

 
Figure 9. Model Accuracy Comparison Chart 

IV. DISCUSSION 
The validation accuracy of 99.15% at epoch 

10 demonstrates stable convergence toward 
optimal performance, exceeding the clinical 
acceptability threshold of 90-95% for medical AI 
systems. The consistency of accuracy across 
multiple training epochs indicates optimal 
convergence without overfitting, a characteristic 
that is crucial for generalization on unseen 
clinical data. Perfect precision (1.00) for the 
“Non-Brain CT Scan” class indicates that the 
model never misclassifies medical images as 
non-medical, maintaining diagnostic integrity. 
Computational efficiency with training time of 17–
50 minutes on standard hardware and inference 
time of 0.3 seconds per image meets real-time 

requirements for emergency diagnostic 
scenarios where rapid decision-making can 
significantly impact patient outcomes.  

Achieving a 100% success rate in 
illumination robustness testing demonstrates 
exceptional adaptability to environmental 
variations commonly encountered in clinical 
environments, particularly significant for 
emergency departments and resource-limited 
settings where optimal lighting conditions are not 
always available. 

Robustness testing revealed different optimal 
performance zones for each class “Ischemic 
Stroke” achieved 71%-97% in the 30-90 cm 
range, while “Normal CT Scan” achieved 30%-
91% in the 30-50 cm range. Live camera testing 
validation confirms practical viability for point-of-
care applications and remote consultation 
scenarios with success rates >70% across 
different capture methods, demonstrating 
adaptability to various consultation modalities in 
telehealth implementations. The integration of an 
OOD detection mechanism represents a 
paradigm shift in medical AI safety, addressing a 
critical gap in current diagnostic systems prone to 
confident misclassification on inappropriate 
inputs. Perfect OOD detection performance 
(100% accuracy, 0% false positive rate) indicates 
that the model possesses “self-awareness” to 
recognize limitations and reject unsuitable inputs.  

Error pattern analysis shows that most 
classification errors occur in challenging 
borderline cases, even for experienced 
radiologists, indicating that model performance is 
in line with the expected variability of human 
experts. Validation of the dataset using real data 
from Labuang Baji Regional General Hospital 
ensures relevance to the Indonesian population, 
addressing an important consideration in the 
application of medical artificial intelligence. 
Implementation readiness is demonstrated 
through moderate hardware requirements and 
the ability to operate on standard laptop 
hardware with reasonable inference times, 
making this solution accessible to a wide range 
of healthcare facilities, from large hospitals to 
rural clinics with limited computing resources.

 

Table 10. Comprehensive Performance Comparison Across Different Architectures 

Method Validation Accuracy 
(%) Precision Recall F1-Score Training 

Time (min) 
Swin Transformer 99.15 0.99 0.99 0.99 24 

CNN  89.74 0.90 0.90 0.90 4 
ResNet-50 96.58 0.97 0.97 0.97 19 
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V.CONCLUSSION 
This study successfully developed an 

ischemic stroke diagnosis system based on Swin 
Transformer integrated with an Out-of-
Distribution detection mechanism specifically 
designed for stroke diagnosis from CT images, 
achieving an optimal validation accuracy of 
99.15% with exceptional robustness in real-world 
conditions. The implementation of a hybrid 
architecture demonstrates superior capability in 
classifying brain CT scan images with perfect 
OOD detection (100% success rate), ensuring 
diagnostic safety by rejecting irrelevant inputs. 
Comprehensive clinical validation using 
additional metrics Dice Score (1.00), False 
Detection Ratio (0.85%), Inference Success Rate 
(99.15%) confirms the system's readiness for 
clinical deployment. Multi-dimensional 
robustness evaluation confirmed the model's 
reliability with a 100% success rate across 
lighting variations and optimal performance 
within a 30-60 cm distance range, making it 
suitable for teleradiology applications. Validation 
using an indigenous dataset from Labuang Baji 
General Hospital ensures relevance to the 
Indonesian demographic context, while 
computational efficiency on standard hardware 
with an inference time of 0.3 seconds confirms 
the feasibility of implementation across various 
healthcare settings. 

The significant contribution of this 
research lies in the successful integration of 
cutting-edge Vision Transformer technology with 
essential safety mechanisms specifically tailored 
for stroke diagnosis applications, creating a 
clinically validated solution for accurate, reliable, 
and safe diagnosis of ischemic stroke. The 
developed model is ready to support clinical 
decision-making in various scenarios, from 
emergency rooms to rural clinics, with the 
potential to enhance diagnostic consistency and 
reduce the workload of radiologists. Future 
research directions will focus on multi-center 
validation studies to address the single-institution 
limitation, integration with hospital information 
systems for seamless clinical workflow, 
development of explainable AI features to 
enhance clinical adoption and trust, and 
expansion of the dataset to include additional 
stroke subtypes and pathological conditions. 
With performance exceeding clinical acceptance 

thresholds and comprehensive robustness 
validation, this system represents a significant 
step forward in automated medical diagnosis that 
could have a meaningful impact on the quality of 
healthcare services in Indonesia. 
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