International Journal of Civil Engineering and Technology (IJCIET)

Scopus

Volume 9, Issue 9, September 2018, pp. 859–871, Article ID: IJCIET_09_09_082 Available online at http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=9 ISSN Print: 0976-6308 and ISSN Online: 0976-6316

© IAEME Publication

Scopus Indexed

HEXAGONAL PRECAST BLOCK MODEL COMBINE WITH GRASS VEGETATION AS SURFACE RUNOFF PROTECTION ON CLIFF

Arsyuni Ali Mustary, Muh. Saleh Pallu, Rita Tahir Lopa and M.Arsyad Thaha Doctoral Program of Sivil Engineering of Hasanuddin University, Jalan Poros Malino Km. 6 Bontomarannu Kabupaten Gowa, 92119, South Sulawesi, Indonesia

ABSTRACT

Cliff restoration to reduce surface runoff and erosion is a fundamental challenge in the management of the river basin. Surface runoff and erosion are strongly influenced by soil cover and cliff slope, erosion is also affected by splash or rain impact factors, therefore soil cover with Hexagonal Block Precast Combined of Grass Vegetation allows for this purpose.

This study has been analyzed the effect of Hexagonal Precast Block land cover model with grass vegetation combined on surface runoff rate in the form of "C" runoff coefficient or land use factor, and have been found the general equation form produced by the model.

The form of this research is the study of hydrological models by modeling estimates of the amount of surface flow from a small area have used rational methods with Rainfallsimulator tools, The results have been found that the reduction of surface runoff on surface for sample soil without cover (NC) compared with block precast combined grass cover (BG) of 51,2 %, with a coefficient range value of C = 0.128 - 0.266 on moderate to steep slope with moderate rainfall intensity, Eq. the generalresult is, t_{max} , Surface Slope S, Rainfall Intensity i.

Keywords: Surface Runoff rate, soil cover, rainfall simulator

Cite this Article: Arsyuni Ali Mustary, Muh. Saleh Pallu, Rita Tahir Lopa and M. Arsyad Thaha, Hexagonal Precast Block Model Combine with Grass Vegetation as Surface Runoff Protection on Cliff, International Journal of Civil Engineering and Technology, 9(9), 2018, pp. 859–871.

859

http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=9&IType=9

1. INTRODUCTION

As result of rainfall which can affect the soil surface, the effect of runoff will worsen especially if the land is not covered by vegetation, various methods to reduce runoff that have been used but the method is not yet able answer all problems and tend to ignore the effects on the environment, but along with the development of the concept of river- and slope restorations, it becomes a demand in slope protection to maintain the characteristic of ecological. Various types of slope protectors have their advantages and disadvantages both pure vegetation and pure structure, for that we evaluate and design slope protector models from both methods, namely by designing Block Precast Hexagonal and varying with grass vegetation to obtain benefits from both methods.

The method of research by testing a model of cliff protection with Block Precast Hexagonal in combination of grass vegetation against runoff with rainfall variations, soil slope and variation of soil cover using Rainfall Simulator device, then by testing the performance of river slope strengthening model with Block Precast Hexagonal in combination of grass vegetation against runoff, to formulates the relationship of slope protector of Block Precast Hexagonal in combination of grass vegetation against runoff and coefficient value of slope runoff.

2. LITERATURE REVIEW

Factors Affecting Runoff ,such as rainfall intensity, duration and distribution, there are several locational specific factors (water catchment areas) that are directly related to the incidence and runoff volume; a) Type of soil. Such condition is only applying if the condition of the soil surface remains intact and no disruption. It is known that the average size of rainwater drops increases with increasing rainfall intensity, b) Vegetation. The magnitude of interception on vegetation crown depends on the type of vegetation and its growth phase. Common interception values are 1-4 mm. Vegetation also inhibits the runoff, especially on slope lightly, so that water has more chance to seep into the soil or evaporate, c) Slope and size of catchment area. Observations on runoff measuring plots indicate that plots on steep slopes produce more runoff than slope lightly. In addition, the amount of runoff decreases with increasing slope length.

Runoff estimation depends on 3 (three) factors, as follows; a) The maximum amount of rainfall in time unit (maximum intensity), b) Rainfall that becomes runoff (factor value of runoff). The magnitude of this factor value depends on the topography, slope, texture of soil, and also the type of soil cover and its management, c) Catchment area.

The result of runoff hydrograph as one that are considered in overcoming hydrological problems such as planning water sources and flood estimates. It because the hydrograph describes a time distribution of runoff at a measurement site, the results in graphs that can indicate when the peak discharge occurred. Through a rain simulator device, it becomes an alternative modeling to show the process of rain-runoff. The rain simulator is a measurement at Rainfall Simulator Laboratory using the formula:

$$Q = V1 / t$$

(1)

Where, Q is Runoff discharge that occurs (liter/second), Vl is Measured runoff volume of (Liter), t is Time (seconds).

Rain intensity is amount of rain in time unit (mm/hour, mm/min, mm/sec). The time of rain is the length of rain lasts; the duration of rain is the length of rainfall in minutes or hours. It can represent the total rainfall or rainy period which is expressed by relatively uniform rainfall (Asdak, 2010).

Rain intensity is crucial in calculating runoff and the magnitude can be obtained from observations in the field. The magnitude of rain intensity will depend on the density, duration and the frequency of rain by comparing the height of rain with the duration of rain in mm/hour unit or by the following formula:

$$I = \frac{d}{t} \tag{2}$$

Where I is Rain inteisnsity (mm/hour), d is Rain height (mm),t is Time (hours),V is Volume of rain in an area (mm^3) , A is Width of rain area (mm^2) .

Short-term rainfall is expressed in hourly intensity as called rainfall intensity (mm/hour). The average rainfall intensity in t hours (I_t) is expressed by the following formula:

 $I_t = \frac{R_t}{t}$ (3)

Where I_t is Average rainfall intensity, R_t is Rainfall in *t* hour, Tis Time.

Rain intensity is crucial in calculating runoff and the magnitude can be obtained from observations in the field. The magnitude of rain intensity will depend on the density, duration and the frequency of rain by comparing the height of rain with the duration of rain in mm/hour unit. The magnitude of rainfall intensity varies depending on the length of rainfall and its frequency. The high intensity of rainfall generally lasts for a short duration and covers a limited area. Rain which covers a wide area, rarely with high intensity, but can lasts with a long duration. The effect of rainfall intensity on runoff depends on infiltration capacity. If rainfall exceeds the infiltration capacity, the magnitude of runoff will immediately increase in accordance with the increase in rainfall intensity (Triatmodjo, Bambang, 2013). Artificial rain intensity is calculated by using the following formula:

$$I = \frac{V}{AT} x600 \tag{4}$$

Where I is Rain intensity (mm/hour), V is Water volume in containers (ml), A is Container surface area (cm^2) , T is Time (minutes).

In estimating the runoff peak rate, there are at least 3 (three) methods that commonly used namely rational, cook, and USSCS (U,S Soil Conservation Agency). a) Rational method

This formula is the oldest formula among other empirical formulas. To estimate the peak runoff, Q_P , a rational method (U.S. Soil Conservation Service, 1973) is an appropriate technique. This method is relatively easy to use and because it is intended for small-scale watersheds, less than 300 ha (Goldman, et al 1986). A general form of rational formula is based on:

$$Q = C.I.A$$

The method of modification rational is the development of a rational method where the time of rain concentration takes longer. It considers the effect of retention coefficient in estimating the magnitude of peak runoff discharge (Kaharuddin, 2014). Its formula is:

$$Q = 0,0028.Cs.C.I.A$$

For catchment areas where the time of peak discharge (Te) is greater than the time of concentration:

http://www.iaeme.com/IJCIET/index.asp 861

(7)

(6)

Where Q is Peak discharge (m3/sec), I is Rain intensity (mm/hour), A is Width of drainage area (km2), C is Drainage coefficient, Cs is Retention coefficient, Tc is Time of concentration (hour), Td is Drain flow time (hour).

3. METHODOLOGY

The type of research is a research with simple hydrological model by modeling the runoff estimation of a small area using a rational method. This model estimates peak flow (Qp) by using rain intensity, width and land use factor. There is no time difference between falling rain and peak flow. The equation used is:

Qp = C I A (*English units*) or Qp = C I A/360 (*metric units*)

Where C is a coefficient of land use factor and no unit. I the average rain intensity (inch/hour) and a width (acre). In a metric system, I as the average rain intensity (mm/hour), A as width in hectares. Factor 1/360 is required to calculate the peak flow in m3/second units.

The value of C is obtained by using coefficient tables as in the figure, runoff coefficients for various types of land use C. The rational method is used to calculate the runoff from a limited area.

As graph of flow hydrograph, it can be obtained the relationship between runoff and parameters of rainfall intensity, soil slope, and time, so that from linear regression can be obtained the equation of the relationship between parameters.

The instrument used in runoff testing as follows:

3.1. Rainfall intensity measurement tool

It uses Hydrologic Systems Rainfall Simulator and Irrigation System Unit (ESHC) 2x1 m, testing using 8 (eight) small containers which are spread on the surface of the container then measured in 3 types of rotation so it yields 3 (three) variations of rainfall intensity

3.2. Container for sample testing

The container for sample testing is designed in the form of a rectangular box as a test material container with an oblique side made of clear acrylate board with a thickness of 80 mm, while the size of the container is 120 cm long, 100 cm wide, first side height 20 cm, and the second side is 120 cm, by giving mark of slope variation on the side of the test container that is slope of 150, 250, and 450. In the bottom layer of the container is not closed, but on the front wall of the container is given a hole using a hand drill with a diameter of 1 cm and in front of the container is given plastic in order to accommodate the runoff to be measured.

Measurement tool for runoff is also uses a measuring tube with milliliter (ml) unit as measured by the result of runoff that accommodated at the water reservoir produced from the Rainfall Simulator device.

3.2.1. Soil cover

The soil cover is used by two groups, namely non-Block Precast Heaxagonal and Block Precast Hexagonal, for formerly using two types of material, namely Soil cover without protector (NC) and Soil cover with grass vegetation (G), while the second uses two types of material, namely; Soil cover with Block Precast Hexagonal (B) and Soil cover using Block Precast Hexagonal in combination of grass vegetation (BG), the four variations of soil cover can be seen in the following figures.

3.2.2. Making test material

The material used was a prototype of Block Precast Hexagonal test material and grass vegetation vetiver, each test material can be explained as follows:

4. TEST MATERIAL OF HEXAGONAL-SHAPED BLOCK PRECAST

It has a size of 15 cm hexagonal side and 10 cm high, then made a laboratory model with a ratio of 1:3 of the actual size, the size of the hexagonal side 5 cm x 3.33 cm height, material for making *Block Precast Hexagonal* is portland cement, fine sand and water made on wood molds.

Figure 1 Block Precast Hexagonal in actual size and model dimensions with a ratio of dimensions 1:3 (a), Vetivera Grass in actual size and model dimensions with a ratio of dimensions 1:3 (b).

Material of Grass Vegetation It uses a grass prototype vetiver made of plastic grass with a model and size 1:3 from the size of actual vetiver grass seeds, with 10 cm high, and 8 cm length and 3 cm diameter. For the formation of test material can be seen in the following figure:

Figure 2 Side- and front views of the formation model of Block Precast Hexagonal and grass vegetation on soil slope variations in the container of Rainfall simulator (a) formation at a slope of 26%, (b) formation at slope of 42%, (c) formation at a slope of 64%

The following figure is a documentation of the installation of test material on the Rainfall Simulator device.

Hexagonal Precast Block Model Combine with Grass Vegetation as Surface Runoff Protection on Cliff

Figure 3 Data collection on *Rainfall Simulator* device (a) Rainfall intensity data, (b) No cover runoff data (NC), (c) grass cover runoff (G), (d) *Block Precast* runoff (B), (e) grass cover runoff and *Block Precast* combine grass cover (BG), and (f) Installation of plastic bag as runoff container

5. RESULTS AND DISCUSSION

5.1. Measurement result of runoff

Comparison of runoff rates is presented by data as result of observation every ten minutes for 90 minutes or one half hours, in the soil cover without Block Precast and the soil cover with Block Precast, with the following analysis:

Observation time		Me ani rement	Result of Runo	Result of Rainfall Intensity (I)			
Time (t)	Time (t)	Menaured runoff (Qu), with Grass and Block Preenst (GB)	Mensured runoff(Qu)	Mensured runoff (Qu)	R.ninfall Intensity	Rainfall Intensity	(I) by Obser Time
(Hour)	(Min)	(ml/min)	(ml/sec)	(mm ² /acc)	mm/sec	mm/scc	mm/acc
(1)	(2)	(3)	(4)	(5)	(6)	Ø	(8)
Slope 26%	* * *						
0	0	0	0	0	0.00	0.00	0.0000
0.1667	10	795	13.2500	132.50	110.50	0.03.07	0.3069
0.3333	20	1250	20.8333	20833	1 10.50	0.03.07	0.6139
0.5	30	1545	25.7500	25750	1 10.50	0.03.07	0.9208
0.6667	40	1890	31.5000	31500	110.50	0.03.07	1.2278
0.8333	50	1890	31.5000	31500	110.50	0.03.07	1.5347
1	60	1100	18.3333	18333	110.50	0.03.07	1.8417
1.1670	70	950	15.8333	15833	110.50	0.03.07	2.1486
1.3333	80	190	3.1667	3167	110.50	0.03.07	2.4556
1.5	90	0	0	0	110.50	0.03.07	2.7625
Slope 42%	6						
0	0	0	0		0.00	0.00	0.0000
0.1667	10	1000	16.6667	16667	110.50	0.03.07	0.3069
0.3333	20	1500	25.0000	25000	110.50	0.03.07	0.6139
0.5	30	2100	35.0000	35000	110.50	0.03.07	0.9208
0.6667	40	2800	46.6667	466.67	110.50	0.03.07	1.2278
0.8333	50	2800	46.6667	466.67	110.50	0.03.07	1.5347
1	60	840	14.0000	14000	110.50	0.03.07	1.8417
1.1670	70	340	5.6667	5667	110.50	0.03.07	2.1486
1.3333	80	130	2.1667	2167	110.50	0.03.07	2.4556
1.5	90	0	0		110.50	0.03.07	2.7625
Slope 64%	6						
0	0	0	0	0	0.00	0.00	0.0000
0.1667	10	1150	19.1667	19167	110.50	0.03.07	0.3069
0.3333	20	1900	31.6667	31667	110.50	0.03.07	0.6139
0.5	30	4350	72.5000	72500	110.50	0.03 07	0.9208
0.6667	40	4350	72.5000	72500	110.50	0.03 07	1.2278
0.8333	50	2800	46.6667	466.67	110.50	0.03 07	1.5347
1	60	2200	36.6667	36667	110.50	0.03.07	1.8417
1.1670	70	876	14.6000	14600	110.50	0.03.07	2.1486
1.3333	80	230	3.8333	3833	110.50	0.03 07	2,4556
1.5	90	0	0	0	1 10.50	0.03 07	2.7625

864

 Table 1 Measurement results of runoff on the grass soil cover Precast Hexagonal (BG) at rainfall intensity 110,5 mm/hour

Source: Analysis results 2018

At Table 1, has been shown the logical phenomenon that grass vegetation has a significant influenced on the reduction of runoff even though there is a Block Precast, the reduction in runoff rate caused by the combination of grass and Block Precast (BG) is still close to runoff caused by grass cover (G) because the grass as a medium for infiltration into the soil.

5.2. Analysis Result of Runoff Coefficient (C)

An influential parameter in determining the results of runoff coefficient (C) is the maximum average runoff (Qmax) in mm3/sec unit compared to the rainfall intensity (I) in mm/sec unit and the land surface area (A) in mm3 unit, this equation is obtained from the rational formula Q = C.I.A.

Table 2 Recapitulation of analysis results of surface runoff coefficient value C on the cover with
hexagonal precast block (B) and the cover with hexagonal precast block combined Grass Vegetation

Criteria of rainfall intensity	Type of Cover	Slope	Surfa Coef		
		≤ 26%	0.169	-	0.268
61,6 - 110,5 mm/hour	Cover With Hexagonal Precast Block (B)	≤ 42%	0.272	-	0.295
		≤ 64%	0.295	-	0.345
	Cover With Hexagonal Precast	≤ 26%	0.128	-	0.184
61,6 - 110,5 mm/hour	Block Combined Grass Vegetation	≤ 42%	0.137	-	0.214
	(BG)	≤ 64%	0.147	-	0.266

1		1	7	١
	ĸ		т	
11		•		J.

The results of the analysis of the determination of runoff coefficient (C), among others on the cover with hexagonal Precast Block (B) and The cover with hexagonal precast block combined grass vegetation (BG) on rainfall intensity 61.6 mm/hour to 110,5 mm/hour.

Hexagonal Precast Block Model Combine with Grass Vegetation as Surface Runoff Protection on Cliff

Observation time		Меазыкотото	ent Result of Ru	Result of Rainfall Intensity (I)			
Time (t)	Time (t)	Measured run off (Qu), with Grass and Block Precast (GB)	Measured runo ff (Qu)	Measured runoff (Qu)	Rainfall Intensity	Rainfall Intensity	(1) by Obser Time
(Hour)	(Min)	(mimin)	(mliter)	(mm ² /sec)	mmittee	mm/sec	mm/sec
(1)	(2)	(1)	(4)	(*)	(*)	0	(1)
lopic 26%							
0	0	0	0	0	0.00	0.00	0.0000
0.1667	10	795	13.2500	132.50	110.50	0.0307	0.3069
0.3333	20	1250	20.8333	20833	110.50	0.0307	0.6139
0.5	30	1545	25.7500	257.50	110.50	0.0307	0.9208
0.6667	40	1890	31.5000	31500	110.50	0.0307	1.2278
0.8333	50	1890	31.5000	31500	110.50	0.0307	1.5347
1	60	1100	18.3333	183.33	110.50	0.0307	1.8417
1.1670	70	950	15.8333	15833	110.50	0.0307	2.1486
1.3333	80	190	3.1667	3167	110.50	0.0307	2.4556
1.5	90	0	0	0	110.50	0.0307	2.7625
kg c 42%							
0	0	0	0		0.00	0.00	0.0000
0.1667	10	1000	16.6667	166.67	110.50	0.0307	0.3069
0.3333	20	1500	25.0000	250.00	110.50	0.0307	0.6139
0.5	30	2100	35.0000	350.00	110.50	0.0307	0.9208
0.6667	40	2800	46.6667	466.67	110.50	0.0307	1.2278
0.8333	50	2800	46.6667	466.67	110.50	0.0307	1.5347
1	60	\$40	14.0000	140.00	110.50	0.0307	1.8417
1.1670	70	340	5.6667	5667	110.50	0.0307	2.1486
1.3333	80	130	2.1667	2167	110.50	0.0307	2.4556
1.5	90	0	0		110.50	0.0307	2.7625
log c 66%	_			-			
0	0	0	0	0	0.00	0.00	0.0000
0.1667	10	1150	19.1667	191.67	110.50	0.0307	0.3069
0.3333	20	1900	31.6667	31667	110.50	0.0307	0.6139
0.5	30	4350	72.5000	72500	110.50	0.0307	0.9208
0.6667	40	4350	72.5000	72500	110.50	0.0307	1.2278
0.8333	50	2800	46.6667	466.67	110.50	0.0307	1.5347
1	60	2200	36.6667	366.67	110.50	0.0307	1.8417
1.1670	70	876	14.6000	14600	110.50	0.0307	2.1486
1.3333	80	230	3.8333	3833	110.50	0.0307	2.4556
1.5	90	0	0	0	110.50	0.0307	2.7625

Table 3 Analysis results of the determination of surface runoff coefficient (C) on the soil cover in combination of grass and Block Precast (BG) on Rainfall intensity 110,5 mm/hour

While, the value of coefficient (C) of soil cover Block Precast in combination of grass (BG) on the slope of 26% is obtained coefficient values between 0.128 to 0.184, at a slope of 42% is obtained coefficient values between 0.137 to 0.214, at a slope of 64% is obtained coefficient values between 0.147 to 0.266.

5.3. Relationship between Runoff Discharges (Q) and Time (t) Parameters

The relationship between runoff (Qt) parameter to the observation time is the equation to obtain peak time (t_{max}), the usual peak time is also termed the time to reach a constant point, or the maximum time needed to achieve maximum runoff. When runoff is constant, the rain is stopped, or in other words the soil is saturated with water and the infiltration process occurs very slowly so that the water that will fall in the form of rain and will overflow the surface entirely.

	Measured runoff discharge (()u), with Grass and Block				Analysis of surface runoff discharge / 10 minute (Ot)					
	Procast cover(BC)									·
Time (t)		surface	surface						C ocfficient of	
	surface runoff	TINOT	runo 🕈	Cumdative	Rabbill	Internetty (1)		Rain discharge	measured	OL = C.LA
	discharge (Qu)	d is charge	discharge	(0=0)			(A)	(Qb)= LA	nunotr(C)	
		(024)	(0=0)						0=0%	
(Minutz)	(mimin)	(milea:)	mmf/scc	mms*/acc	nm ho ur	mm/acc	11.12	mm'ädk		nm*/detk
\$)	(2)	(2)	- 80	(8)	(F)	(2)	(1)	(*)	(48)	642
lope 26%										
0	0	0	0	0	-	0	0	0	0	0
10	785	13.2500	12250	192.50		0.00994	3992.00	1 191 59	0.1112	1 225 0
20	12 50	20,62,22	2 0933	360.83	_	0.91399	3992.00	2 3 9 9 1 2	0.1490	3,609,9
30	15-65	25.75.00	25750	599.33	110.5	0.92093	2002/00	357468	0.1674	59933
40	18.90	21.50.00	31500	913.33	110.5	1.22776	3992.00	4799.23	0.1919	9123.3
50	18.90	21.50.00	31500	1 229 33	110.5	1.59672	2002/00	\$ 957 79	0.2092	122,833
60	11.00	18.33.33	1 8000	141167	110.5	1.84197	2002/00	714925	0.1975	141 197
70	950	15,60.00	1 5933	1 \$70.00	110.5	2.14091	2002/00	8.940.91	0.1692	157,000
80	190	3.1997	2167	190197	110.5	2.45556	2002/00	9 592 47	0.1990	190 197
90	0	0	0	190197	110.5	2.76250	2002/00	1072603	0.1496	190197
ope 42 %			Rata-rata	106430		1.5902	2012000	199-778	0.1759	106426
0	٥	0		0	0	0	0	٥	0.0000	0
10	10.00	19,99,97	1 0007	169.67	110.5	0.0009.6	413760	1270.01	0.1912	19997
20	1500	25.00.00	2 2000	419.97	110.5	0.91399	4137.60	2,540,03	0.1940	41997
30	21.00	25.00.00	3 5000	799.97	110.5	0.9209.9	4137.60	38100d	0.2012	7 699 7
40	28.00	49,69,67	4 9997	1 233 33	110.5	1.22776	4197/60	500005	0.2.628	123 333
50	28.00	49,69,67	4 9997	1700.00	110.5	1.59672	419760	6 350 07	0.2677	170,000
60	800	16.00.00	1 6000	1 840 00	110.5	1.84197	419760	7920.09	0.2415	194,000
70	240	5.0.007	2007	1 899 97	110.5	2.1.6991	619760	8 890 09	0.2129	100.007
80	120	2,1997	2167	1919.33	110.5	2,4555.6	619760	101 901 1	0.1999	191 899
90	0	0		1919.33	110.5	2,7925.0	4197.90	114 201 2	0.1979	191 833
ope 64 %	-		Rata-rata	12174		1.59(72)	415760	695007	0.20%	121781
0	0	0		0	0	0	0	0	0.0000	0
10	11,50	19,19,97	19167	191.97	110.5	0.20994	6995.25	1 \$02 \$7	0.1279	19197
20	19.00	21,69,67	21997	509.33	110.5	0.91399	6995.25	200514	0.1992	5089.9
30	43.50	72.5000	7 2 5 0 0	1 200 00	110.5	0.92093	6995.25	490771	0.2799	123 223
40	4380	72,50.00	7 2900	1959.00	110.5	1,22776	6995.25	601029	0.0259	195.620
50	28:00	49,9997	4 9997	2 425 00		1,59472	4995.25	751265	0.0220	242 500
60	22.00	29.99.97	3 6667	279167	110.5	1.84197	4995.25	901542	0.3097	279167
70	2200	14.60.00	1 4900			2,1,699,1	6895.25	105179.9		299797
				2 997 97					0.2793	
80	220	3.8333	3633	2979.00		2.4555.6	4995.25	120 2058	0.2.676	297 600
90	0	0		2979.00	110.5	2.76250	6995.25	125 221 2	0.2.201	297 600

 Table 4 Analysis result of surface runoff discharge (Qt) and observation time on the soil cover in combination of grass and Block Precast (GB) on Rainfall intensity 110,5 mm/hour

In the table has been shown the maximum Q for the lowest grass soil Block Precast (TRB) at a slope of 150 and the rainfall intensity 61.6 mm/hour by 42545 mm3/sec, while the highest maximum Q is at a slope of 40^{0} and the rainfall intensity 110.5 mm/hour by 199977 mm3/second, it can be analyzed that the increase in the amount of runoff discharge is directly proportional to the increasing of rainfall intensity and soil slope.

Based on the result a linear graph is made of the relationship between parameters of discharge (Q) with rainfall intensity (I) and soil slope.

Figure 5 Graph of the relationship of runoff (Qt) by time (t) on variations in soil slope and at rainfall intensity 110,5 mm/hour, on the grass soil cover Block Precast (BG)

In figure 5, the graph of the relationship of runoff discharge every ten minutes of observation time (Qt) on the *Block Precast combine grass cover* (BG) on rainfall intensity 110,5 mm/hour, where the equation of linear regression between the variables of runoff and time (10 minutes and multiples) is obtained equation; f(x) = 928.52x - 3494.8 for a slope 26%, f(x) = 1028.4x - 2734.2 for a slope of 42%, and f(x) = 1277.4x - 2100 aslope of 64%.

In general, the maximum time (t_{max}) is strongly influenced by the soil slope, as evidenced by the peak time from the linear equation between runoff and time, it tends shows that the yield (t_{max}) is influenced by the soil slope, the greater of slope, the faster of peak time to reach, or the faster to reach a constant point. As result of analysis of the maximum time (t_{max}) it is found that the greater of soil slope, the faster to reach its maximum time.

5.4. Relationship between Maximum Runoff (Qmax) and Observation Parameters

To determine the relationship between parameters in this case runoff (Qmax) and rainfall intensity (I), a regression analysis was performed to find the relationship, in order to get equality that relating between runoff, rainfall intensity and slope of soil cover variation.

Grass combine Block	Maximum Runoff (Omax)									
Precast Soil Cover (GB)	с	Average	А	Q=CIA						
Units		mm/sec	mm²	mm ² /sec						
II = 61.6 mm/hour										
S = 26 %	0.1281	0.8556	388200	42545						
S = 42 %	0.1367	0.8556	413760	48382						
S = 64 %	0.1469	0.8556	489525	61542						
I1 = 96,93 mm	II = 96,93 mm/hour									
S = 26 %	0.1841	1.34625	388200	96239						
S = 42 %	0.2139	1.3462.5	413760	1 19157						
S = 64 %	0.2105	1.34625	489525	138730						
I1 = 110,5 mm	II = 110,5 mm/hour									
S = 26 %	0.1753	1.53472	388200	104426						
S = 42 %	0.2075	1.53472	413760	131741						
S = 64 %	0.2662	1.53472	489525	199977						
Source: Analysis results 2018										

Table 5 Analysis result of maximum runoff (Qmax) on variations in slope and rainfall intensity (I) on the grass combine Block Precast soil cover (GB)

While, the relationship of maximum runoff (Qmax) rate to the soil slope of the Block Precast cover (B) is shown in Figure, where the form of linear regression equation between the variables of runoff and the soil slope are obtained equation; f(x) = 9498,1x + 31824 for the intensity of Rainfall Intensity 61.6 mm/hour, f(x) = 21245x + 75551 for the Rainfall Intensity 96.93 mm/hour, and f(x) = 47776x + 49830 for the Rainfall Intensity 110.5 mm/hour.

Figure 6 Graph of the relationship of maximum runoff (Qmax) and Rainfall Intensity (I) on slope variation, on the Block Precast combine Grass Cover (BG)

As result of the linear regression equation from the graph of the relationship between runoff (Q) and rainfall intensity (I) can be used to determine the value of rainfall intensity from the magnitude of runoff rate (Q), for example the equation f(x) = 30942x + 19186 for a slope of 26%, function f (x) can be analogous as a result of runoff discharge, then its equation will be, Q = 30942x + 19186, so that the value of x can be analyzed to be, $x = \frac{Q}{30942} - 0.62006$,

the result of value x is multiplied by the average slope interval (unit in degree, (0) or percent, %) so that the value of the soil slope can be obtained from this equation with one of these units.

Likewise, the results of the linear regression equation from the graph of the relationship between runoff (Q) and the soil slope (S) can be used to determine the magnitude of soil slope from the runoff rate (Q), for example the equation f(x) = 9498.1x + 31824 for the intensity of CH of 61.6 mm/hour, f (x) is included in the runoff rate, it will be, Q = 9498,1x + 31824, so that the value of x can be determined, $x = \frac{Q}{9498.1} - 3.3505$, the result of value x is multiplied by the average rainfall intensity interval (unit in mm/hour or mm/sec) so that the value of the rainfall intensity can be obtained from this equation with one of these units. Hexagonal Precast Block Model Combine with Grass Vegetation as Surface Runoff Protection on Cliff

6. CONCLUSION

Addressing the objectives described at the beginning of this writing, based on the results and discussion of the research, some conclusions can be drawn as follows:

- 1. Results of research on soil cover without Block Precast Hexagonal appears a phenomenon related to the runoff rate that runoff capacity (Q) on soil without cover (NC) and soil with grass cover (G) is influenced by the rainfall intensity (I) and soil slope (S), as well as on soil cover with Block Precast Hexagonal the runoff capacity (Q) on soil with Block Precast Hexagonal (B) and soil with grass cover Block Precast Hexagonal (GB) is influenced by rainfall intensity (I) and soil slope (S).
- 2. Results of performance analysis of soil cover without Block Precast Hexagonal and with Block Precast Hexagonal show similar phenomenon as previous conclusions, Runoff capacity (Q) is also influenced by land use factor or analogous to factor of soil cover type, in the form of runoff coefficient (C), where the value of C shows the ratio of runoff capacity with rainfall capacity, so that the performance of cover model can be seen from the difference between the soil cover using Block Precast Hexagonal and without Block Precast Hexagonal, significant reduction can be seen in the soil without cover (NC) compared to Block Precast cover (B) and Block Precast combine grass cover (BG) with a runoff reduction 34% to 49%, with a coefficient range value of C = 0.128 - 0.266 on moderate to steep slope with moderate rainfall intensity
- 3. The results of the evaluation of the influence of several parameters in the runoff are; a) Parameter of slope, that the results of runoff will be greater with the magnitude of the slope (S), b) parameter of rainfall intensity, that the runoff will increase as the intensity of rainfall increases (I). It means that the magnitude of rainfall intensity and slope is directly proportional to the runoff rate.
- 4. A general equation as result of hydrograph analysis that occurs in the variation of soil cover based on time in reaching a constant point, that the soil slope has a dominant influence on time in reaching a constant point tmax = $\frac{Q}{20364}^{-1.15252}$, and soil slope on variations in soil cover yield equations, among S = $\frac{Q}{30942}^{-0.62006}$, to obtain the magnitude of rainfall intensity so that a value can be determined, I = $\frac{Q}{94981}^{-3.3505}$, the value of rainfall intensity can be obtained from multiplied by the average rainfall intensity interval.

REFERENCES

- [1] Alvian Saragih, Wiwik Y. Widiarti, Sri Wahyuni, 2014. Effect of Rain Intensity and Tilt of Slope Against Rate of Land Loss Using Rainfall Simulator Tool, Journal of Jember University.
- [2] Arfan, H., and Pratama, A. 2010. Experimental Model of Effect of Density, Rainfall Intensity and Tilt on the Absorption on Organic Soil. Department of Civil Engineering Faculty of Engineering Hasanuddin University. Makassar.
- [3] Arsyad. Sitanala, 2012. Soil & Water Conservation, Second Edition, PT.Penerbit IPB Press,ISBN:978-979-493-415-9. Bogor.Indonesia.
- [4] Asdak.C,2010.Hydrology,Fifth Printing (Revision),Gadjah Mada University Press.ISBN 979-420-737-3.Jogyakarta.Indonesia.

- [5] Bentroup, G. and J.C Hoang. 1998. The practical streambank bioengineering guide. USDA NRCS. Aberdeen, ID 55p, USA.
- [6] Dayu Setyo Rini, 2015. Penerapan Rekayasa Ekohidrolika untuk Penguatan Tebing Sungai dan Pemulihan Habitat Kawasan Suaka Ikan Kali Surabaya, Jurnal Eko Hidraulik, Malang.
- [7] Fischenic, JC .1989. Channel Erosion Analysis and Control. In Woessmer, W .and DFology..Potts ,eds Proceeding Headwater Hydrology. American Water Resources Association. Bethesda, Md
- [8] Garanaik, Amrapalli and Sholtes, Joel. 2013. River Bank Protection. New York.USA.
- [9] Gerken, B., 1988: Auen, verborgeneLebensadern der Natur (River Plate represents the Lives of the Hidden Life), RombaRainfall, Freiburg.
- [10] Kaharuddin, 2014. 1939. Study of Sediment Rate Control With Control Building In Upper Dice Batang Gadis Provinsi Sumatera Utara
- [11] Kodoatie, R.J and Sharif, Rustam, 2005. Integrated Water Resources Management. Andi, Yogyakarta
- [12] Kusminingrum, Nanny.2011.Vetiver and Bahia Grass Underweight in Minimizing Slope Erosion, The Journal of Eko Hydraulics.
- [13] Laoh OEH. 2002. Linkages of Physical Factors, Socioeconomic Factors and Land Use Efforts in water catRainfallment areas with erosion and sedimentation (Thesis). Bogor Postgraduate Program, IPB.
- [14] Lopa T.Rita, Yukihiro Shimatani, 2013. Evaluating The River Healthof Pre- And Post-Restoration In The Kamisaigo River, Fukuoka, Japan River Restoration Center 13th Annual Network Conference
- [15] Maryono, A. 2008: Eco-Hydraulic Eco-Friendly River Management. Yogyakarta: GadjahMada University Press.
- [16] Maryono, A., 2005. Eko-Hydraulic River Development. Yogyakarta: Master of Engineering System of Graduate Program of Gadjah Mada University Coefficient Of Flow With Pillar Installed Simultaneously At Interval Of 300 And 600 Along The Rainfallannel Of Bend 1800.Asian Academic ResearRainfall Journal Of Multidisciplinary, Japan
- [17] Patt, H., Jurging, P., Kraus, W., 1999: NaturnaherGewasserausbau (River / Watermark renaturalization), Springer Verlag, Berlin.
- [18] Rini, DaruSetyo. 2015. Application of Ecohydrolic Engineering for Reinforcing River Cliffs and Habitat Recovery of Asylum Area of Surabaya River, JurnalEkoHidraulik.
- [19] Suprayogi.Slamet, Purnama.Setyawan, Darmanto Darmokusomo. 2015. Watershed Management, Gadjah Mada University Press. Yogyakarta.
- [20] Thaha. Arsyad.M, A.B Muhiddin. The Combination Of Low Crested Breakwater With Mangroves To Reduce The Vulnerability Of The Coast Due To Climate Change, Proceedings of the Sixth International Conferenceon Asian and Pacific Coasts (APAC2011)December 14–16,2011,HongKong,China
- [21] Triatmodjo, Bambang, Applied Hydrology. 3rd Print, Beta Offset, Yogyakarta, 2013.
- [22] Truong, P., Tran Tan Van and Elise Pinners. 2008. Vetiver Grass The Plant. The Vetiver System, Vietnam2000-2008