EVALUASI SISTEM PROTEKSI RELAY *IMPEDANCE*JARINGAN TRANSMISI 150 KV GARDU INDUK BAKARU-TELLO

JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH MAKASSAR 2015

EVALUASI SISTEM PROTEKSI RELAY *IMPEDANCE*JARINGAN TRANSMISI 150 KV GARDU INDUK BAKARU-TELLO

SKRIPSI

Diajukan Untuk Memenuhi Persyaratan Guna Memperoleh Gelar Sarjana Teknik

Pada Program Studi Teknik Listrik Jurusan Elektro Fakultas Teknik Universitas

Muhammadiyah Makassar

Disusun dan Diajukan Oleh

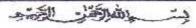
HENDRA MARHADI

ISMAIL

105820043810

105820047210

UNIVERSITAS MUHAMMADIYAH MAKASSAR MAKASSAR


PERPUSTAKAAN DAN PE

2015

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS TEKNIK

Jl. Sultan Alauddin No. 259 Telp. (0411) 866 972 Fax (0411) 865 588 Makassar 90221

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan untuk memenuhi syarat ujian guna memperoleh gelar Sarjana Teknik (ST) Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Makassar.

Judul Skripsi : Evaluasi Sistem Proteksi Relay Impedance Jaringan Transmisi

150 kv Gardu Induk Bakaru-Tello

Nama

: ismail

Hendra Marhadi

Stambuk

: 105 82 00472 10

105 82 00438 10

Makassar, 12 Maret 2015

Telah Diperikes dari Disetujui Oleh Dosen Perubimbing;

Pembimbing I

Pembimbing to

Dr. Ir. Indra Jaya Mansur, MT.

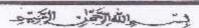
Rizal A Duyo, ST., MT.

Mengetahui,

STAKAAN DA

Ketua Jurusan Elektro

The same of


Umar Katu, ST., MT.

NBM: 990 410

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS TEKNIK

Jl. Sultan Alauddin No. 259 Telp. (0411) 866 972 Fax (0411) 865 588 Makassar 90221

PENGESAHAN

Skripsi atas nama Ismail dengan nomor induk Mahasiswa 105 82 00472 10 dan. Hendra Marhadi dengan nomor induk Mahasiswa 105 82 00438 10, dinyatakan diterima dan disahkan oleh Panitia. Ujian Tugas Akhir/Skripsi sesuai dengan Surat Keputusan Dekan Fakultas Teknik Universitas Muhammadiyah Makassar Nomor: 332/05/A.5-II/II/36/2015, sebagai salah satu syarat guna memperoleh gelar Sarjana Teknik pada Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Makassar pada hari Sabtu 28 Februari 2015

02 Jumadil Akhir 1436 H Makassar. 12 Maret 2015 M Panitia Ujian: 1. Pengawas Umum a. Rektor Universitas Muhammadiyah Makas Dr. H. Irwan Akib, M.Pd. b. Dekan Fakultas Teknik Universitas Hasanuddin Dr. -Ing. Ir. Wahyu H. Piarah, MSME. 2. Penguii : Dr. H. Zulfajri Bash Hasanuddin, M.Eng. a. Ketua : Anugrah, ST., MM b. Sekertaris 1. Dr. Ir. Zahir Zainuddin, M.Sc. Anggota 2. Rehmania, ST., M 3. Adrieni, ST., MT Pembimbing II Pembimbing I Dr. fr. Indra Jaya Mansur, MT. Rizal A Duyo, ST.

> Ketua Program Studi Teldrik Elektro

Umar Katu, ST., MT. NBM: 990 410

KATA PENGANTAR

Syukur Alhamdulillah penulis panjatkan ke hadirat Allah SWT, karena Rahmat dan HidayahNyalah sehingga penulis dapat menyusun skripsi ini, dan dapat kami selesaikan dengan baik.

Tugas akhir ini disusun sebagai salah pensyaratan akademik yang harus ditempuhdalam rangka penyelesaian program studi pada Jurusan Elektro Fakultas Teknik Universitas Muhammadiyah Makassar. Adapun judul tugas akhir adalah : "Studi Evaluasi Sistem Proteksi Relay Inpedance Jaringan Transmisis 150 KV Gardu Induk Bakaru - Tello"

Penulis menyadari sepenuhnya bahwa dalam penulisan skripsi ini masih terdapat kekurangan-kekurangan, hal ini di sebabkan penulis sebagai manusia biasa tidak lepas dari kesalahan dan kekurangan baik itu ditinjau dari segi tehnis penulis maupun dari perhitungan-perhitungan. Oleh karena itu penulis menerim dengan ikhlas dan senang hati segala koreksi serta perbaikan guna penyempurnaan tulisan ini agar kelak dapat bermanfaat.

Skripsi ini dapat terwujud berkat adanya bantuan, arahan, dan bimbingan dari berbagai pihak. Oleh karena itu dengan segalan ketulusan dan kerendahan hati, kami mengucapkan terima kasih dan penghargaan yang setinggi-tingginya kepada :

- Bapak Hamzah Al Imran, ST, MT. Sebagai Dekan Fakultas Teknik Universitas Muhammadiyah Makassar.
- 2. Bapak Umar Katu, ST, MT., sebagai Ketua Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Makassar.

- Bapak. DR. Ir. H. Indra Jaya Mansur, M.T, SelakuPembimbing I dan Bapak Rizal A Duyo, ST, MT, selakuPembimbing II, yang telah banyak meluangkan waktunya dalam membimbing kami.
- 4. Bapak dan ibu dosen serta stap pegawai pada fakultas teknik atas segala waktunya telah mendidik dan melayani penulis selama mengikuti proses belajar mengajar di Universitas Muhammadiyah Makassar.
- 5. Ayahanda dan Ibunda yang tercinta, penulis mengucapkan terima kasih yang sebesar-besarnya atas segala limpahan kasih sayang, doa dan pengorbanan terutama dalam bentuk materi dalam menyelesaikan kuliah.
- 6. Saudara-saudaraku sertarekan-rekan mahasiswa fakultas teknik terkhusus angkatan 2010 yang dengan keakraban dan persaudaraan banyak membantu dalam menyelesaikan tugas akhir ini.

Semoga semua pihak tersebut di atas mendapat pahala yang berlipat ganda di sisi Allah SWT dan skripsi yang sederhana ini dapat bermanfaat bagi penulis, rekan-rekan, masyarakat serta bangsa dan Negara. Amin.

Makassar, Maret 2015

Penulis

DAFTAR ISI

Hal	amar
HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
LEMBAR PENGESAHAN	iii
KATA PENGANTAR	iv
DAFTAR ISI	v
DAFTAR GAMBARS MU/A	vi
DAFTAR TABEL	vii
ABSTRAK	viii
BAB 1 PENDAHULUAN	`1
A. Latar Belakang	1
B. Rumusan Masalah	2
C. Tujuan Penelitian	2
D. Manfaat Penelitian	3
E. Batasan Masalah	3
F. Metode Penulisan	3
G. Sistematika Penulisan	4
BAB IITNJAUAN PUSTAKA	6
A. Relay-Relay Proteksi Saluran Transmisi	6
Fungsi dan Peranan Relay Proteksi	6
2. Syarat-syarat Umum dari Relay Proteksi	6
B. Pemberian Sifat Selektif pada Relay	9

C.	Transduser
	1. Transformator Arus 11
	2. Transformator Tegangan 11
D.	Power Line Carrier (PLC)
E.	Kelompok Jenis Relay
	1. Besaran Relay
	2. Relay Terarah 14
	3. Relay Diferensial
	4. Relay Perbandingan
F.	RelayImpedansi 16
BAB I	II METODOLIGI PENELITIAN
A.	Waktu Dan Tempat
	1. Waktu
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2. Tempat
B.	Langka / Step Penelitian
C.	Gambar Rangkaian 23
BAB I	V HASIL DAN PEMBAHASAN
A.	Tinjauan Sistem Proteksi Saluran Transmisis 150 KV
В.	Daftar Relay dan Data Saluran Transmisi
C.	Perhitunga Data Setting Relay Impedansi
D.	Penyetelan Waktu Kerja
E.	Evaluasi Sistem Proteksi pada Saluran Transmisi 150 KV 50

BABV PENUTUP	52
A. Kesimpulan	52
B. Saran-saran	52
DAFTAR PUSTAKA	53
LAMPIRAN	

DAFTAR GAMBAR

Halaman

Gambar 2.1 Jaringan Tenaga Untuk Menggambarkan Kemampuan Selektifitas Relay Terhadap
Lokasi T Gangguan 8
Gambar 2.2 Diagram Satu Garis Pada Daerah Proteksi Utama
Gambar 2.3 Skema hubungan transformator arus pada saluran system daya 11
Gambar 2.4 Diagram rangkaian transformator tegangan yang dipadukan
Dengan capasitor (CVT) dengan penyetelan induktansi L 12
Gambar 2.5 Diagram segaris yang menunjukkan prinsip kerja relay terarah 14
Gambar 2.6 Karakteristik relay impedansi yang menunjukkan
Daerah perlindungan
Gambar 2.7 Prinsip kerja relay impedansi
Gambar 2.8 Jangkauan daerah proteksi relay impedansi
Gambar 2.19 Karakteristik waktu bertingkat relay impedansi
Gambar 2.10 Karakteristik operasi dan perlambatan waktu relay impedansi
Type Distance Relay19
PERO!

DAFTAR TABEL

2.11 1.11 1.1222
Halaman
Tabel 4.1 Daftar Relay Jarak Dari Sistem Sulawesi Selatan
Tabel 4.2 Data Saluran Transmisi
Tabel 4.3 Daftar Relay Jaraka Pada Sistem Kelistrikan Sulawesi Selatan 32
Tabel 4.4 Konstanta Saluran Transmisi
Tabel 4.5 Data Trafo Arus Dan Trafo Tegangan
Tabel 4.6 Setting Impedasi PLN 34
PCP DEPAUSTAKAAN DAN PRINTED

ABSTRAK

Saluran transmisi adalah salah satu bagian sistem kelistrikan yang sering terganggu. Dengan terganggunya bagian sistem ini maka suplai daya terhadap beban akan terputus sehingga di perlukan suatu system pengamanan yang tepat terhadapkondisiini. Untuk mengisolir gangguan secepat mungkin pada system tenaga listrik supaya bagian yang sehat tidak ikut terganggu maka di gunakan alat proteksi. Pada jaringan transmisi 150 KV G.I Bakaru - G.I Tello alat proteksi yang digunakan adalah Relai Jarak. Untuk menentukan setting relay-relay tersebu tdiperlukan data impedansi saluran, perbandingan trafo arus dan trafo tegangan.

Pada tugas akhir ini akan dievaluasi setting relay impedans ipada jaringan transmisi 150 KV G.I Bakaru - G.I Tello berdasarkan jarak titik gangguan dengan letak relay jarak tersebut yang menggunakan saluran jenis ACSR 240 sebagai saluran pengantar dari gardu satu ke gardu induk lainnya yang terinter koneksi.

ABSTRACT

The transmission line is one part of the electrical system that is often disrupted. With this system, the disruption of parts supply power to the load will be disconnected so in need of a proper security system terhadapkondisiini. To isolate interference as soon as possible on the electric power system so that the healthy part is not disrupted then used a protection device. In the transmission lines of 150 KV substation Bakaru - Tello GI protection device used was Relays distance. To determine the settings of the relays tersebu tdiperlukan channel impedance data, the ratio current transformer and voltage transformer. In this final project will be evaluated on the impedance setting relay transmission lines of 150 KV substation Bakaru - Tello GI disorders based on the distance point to the location of the distance relay which uses channel types ACSR 240 as a channel of introduction from one substation to another substation that terinter connections.

Keywords: Relay impedance, Transmission Line, Substation, Transformer

BABI

PENDAHULUAN

A. Latar Belakang

Penggunaan tenaga listrik dewasa ini menjadi salah satu hal yang sangat penting dalam masyarakat, dimana hal ini berjalan seiring dengan perkembangan dan peningkatan jumlah konsumen. Mengingat hai tersebut pada sistem kelistrikan dituntut adanya penyediaan daya yang mencukupi dan kontinyu oleh produsen sehingga dapat dinikmati oleh konsumen. Oleh karena itu suatu sistem kelistrikan hams dirancang sedemikian rupa dan dikelolah dengan baik dan benar demi kelangsungan penyediaan tenaga listrik.

Terjadinya gangguan pada suatu bagian sistem jaringan tenaga listrik sering tidak dapat dihindari. Agar dapat menyelamatkan peralatan sistem dari kerusakan akibat adanya gangguan, maka dibutuhkan sistem proteksi yang andal.Gangguan yang sering terjadi adalah gangguan hubung singkat.

Untuk memenuhi kebutuhan masyarakat akan tenaga listrik, pemerintah membangun beberapa Pusat Pembangkit Tenaga Listrik dibeberapa lokasi di Sulawesi Selatan. Bersamaan dengan dibangunnya Pusat Pembangkit Tenaga Listrik tersebut, dibangun pula jaringan transmisi 150 KV Sulawesi Selatan untuk menyalurkan daya yang dihasilkan.

Oleh karena transmisi yang dibangun cukup panjang, kemungkinan timbulnya gangguan juga cukup besar sehingga diperlukan adanya sistem proteksi untuk

mengamankan peralatan dan jaringan yang ada. Mengingat akan pentmgnya sistem proteksi tersebut, maka dianggap perlu untuk mengevaluasi sistem proteksi pada jaringan transmisi 150 KV Gardu Induk Bakaru-Gardu Induk Tello. Berdasarkanakan hal tersebut di atas, maka tugas akhir ini dibuat dengan judul "EVALUASI SISTEM PROTEKSI RELAY IMPEDANCE PADA JARINGAN TRANSMISI 150 KV GARDU INDUK. BAKARU - .TELLO".

B. Rumusan Masalah

Agar lebih terarah ke tujuan dan judul di atas, penulis merumuskan beberapa masalah sebagai berikut:

- 1. Bagaimana selektivitas kerja dari Relay Impedansi terhadap jarak (lokasi) gangguan dengan *Relay* tersebut.
- 2. Bagaimana evaluasi dan analisa sistem proteksi pada jaringan 150 KV yang menggunakan Relay Impedansi.
- 3. Bagaimana analisis perhitungan penyetelan impedansi (setting) dari Relay Impedansi. PAUSTAKAAN DAN

C. Tujuan Penelitian

Tujuan dari diadakannya penelitian ini adalah:

- 1. Mengevaluasi sistem proteksi pada jaringan 150 KV yang menggunakan relay impedansi
- 2. Menjelaskan selektivitas tingkat kerja dari *relay* impedansi.
- 3. Membahas perhitungan penyetelan impedansi (setting) dari *relay* impedansi

D. Manfaat Penelitian

Adapun manfaat penelitian ini adalah:

- Sebagai suatu sistem perlindungan atau pengaman untuk mencegah kerusakan pada peralatan sistem tenaga listrik akibat adanya gangguan dan meningkatkan pelayanan kepada konsumen.
- Untuk memisahkan gangguan dari sistem agar bagian sistem yang lain tidak mengalami gangguan, sehingga mutu dan kontinuitas pelayanan dapat tercapai.
- 3. Sebagai parameter untuk menggerakkan relay proteksi pada saat *Pick-Up* yaitu terjadi proses berubahnya kontak *relay* dari posisi awal (istirahat) ke posisi akhir (kerja), sedang proses *Tripping* terjadi apabila ada perintah dari *relay* untuk menggerakkan alat pemutus daya (*circuit breaker* = CB)

E. Batasan Masalah

Batasan masalah pada tugas akhir ini adalah :

- Sistem proteksi yang terdapat pada jaringan transmisi G.I Bakaru G.I
 Tello
- Relay Impedansi yang dievaluasi adalah setting impedansi dan penyetelan waktu kerja.
- Gardu Induk melalui G.I Bakaru, G.I Polewali, G.I Parepare, G.I Pangkep,
 G.I Bosowa dan G.I Tello pada penghantar I dan II

F. Metode Penulisan

Dalam menulis tugas akhir ini penulis menggunakan beberapa metode antara lain:

1. Studi pustaka / literature

Penulis mengumpulkan dan mempelajari buku-buku serta bahan-bahan kuliah yang berhubungan dengan tugas akhir ini.

2. Studi lapangan

Penulis langsung kelapangan mengambil data-data yang diperlukan untuk tugas akhir ini.

3. Diskusi

Penulis mengadakan diskusi dengan pihak-pihak yang memahami permasalahan ini guna memperoleh data dari diskusi tersebut.

G. Sistematika Penulisan

Sistematika penulisan tugas akhir ini adalah:

BAB I PENDAHULUAN

Pada bagian ini dijelaskan tentang perkembangan pembagunan tenaga listrik dan pentingnya sistem proteksi, latar belakang, alasan memilih judul, perumusan masalah, batasan masalah, tujuan penelitian- metode penulisan dan sistematika penulisan.

BAB II RELAY PROTEKSI SALURAN TRANSMISI

Menjelaskan tentang *relay* yang sering digunakan pada saluran / jaringan transmisi khususnya *Relay* Impedansi (*Impedance Relay*)

BAB III METODOLOGI PENELITIAN

Pada bagian ini dicantumkan lokasi penelitian, data / parameter yang digunakan, cara pengambilan sampel dan pengolahan data

BAB IV ANALISA HASIL PEMBAHASAN

Pada bagian ini penulis mengulas daftar relay, data saluran transmisi, data trafo arus dan trafo tegangan dan setting impedansi PT. PLN (Persero) Wil. VIII dan dibahas pula mengenai perhitungan penyetelan *relay* dan evaluasi terhadap sistem proteksi yang ada sekarang.

BAB V PENUTUP

Bagian ini merupakan bagian akhir dari rangkaian tugas akhir yang menguraikan tentang kesimpulan dan saran.

EPOUSTAKAAN DAN PET

DAFTAR PUSTAKA

LAMPIRAN

BAB II

TINJAUAN PUSTAKA

A. Relay – Relay Proteksi Saluran Transmisi

1. Fungsi dan Peranan Relay Proteksi

Nilai investasi peralatan listrik pada suatu pembangkit listrik dan jaringan transmisi sangat besar sehingga perhatian yang khusus harus diutamakan agar setiap peralatan tidak hanya beroperasi dengan efisien yang optimal, tetapi juga teramankan dari gangguan dan kerusakan yang fatal. Untuk itu *relay* proteksi sangat diperlukan pada jaringan proteksi saluran transmisi. Fungsi dan peranan dari relay proteksi ini antara lain:

- a. Memberikan sinyal untuk melepaskan kontak pemutus tenaga /circuit breaker dengan tujuan mengisolir gangguan atau kondisi yang tidak normal yakni hubung singkat.
- b. Melokalisir daerah yang terganggu untuk mencegah meluasnya pengaruhdan akibat yang timbul bagi peralatan lainnya.
- c. Memutuskan hubungan sistem (tripping) pada jaringan transmisi yang terganggu dengan cepat guna menjaga stabilitas, kontinuitas, dan pelayanan kerja dari system.

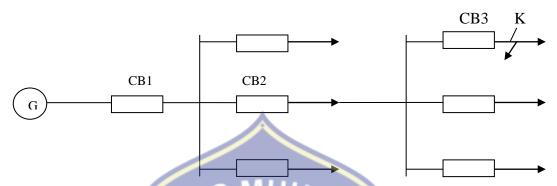
2. Syarat-Syarat Umum dari Relay Proteksi

Relay proteksi ditinjau dari jenis dan dalam penggunaannya harus memiliki syarat-syarat yang penting dalam pengoperasiannya sehingga dapat bekerja sesuai dengan fungsinya secara maksimal.

Syarat tersebut terdiri dari beberapa hal yakni:

a. Kecepatan kerja

Tujuan terpenting dari relay proteksi adalah memisahkan bagian yang terkena gangguan, dari sistem jaringan yang normal dengan cepat (speed) agar tidak menimbulkan kerugian yang lebih besar. Dan untuk dapat meningkatkan keandalan (reliable) operasi dari sistem digunakan proteksi dengan kecepatan kerja yang lebih tinggi dan dipadukan dengan pemutus jaringan kecepatan tinggi. Adakalanya relay proteksi dikehendaki dengan perlambatan waktu (time delay) yang digunakan pada koordinasi proteksi dari beberapa daerah proteksi yang berturut-turut bilamana kondisi sistem memungkinkan adanya perlambatan waktu kerja dari relay tersebut.


b. Kepekaan (Sensitive)

Relay proteksi yang digunakan harus mampu untuk memberikan respon terhadap gangguan yang timbul dalam sistem yakni dapat bekerja pada awal kejadian gangguan.

c. Selektifitas

Adalah kemampuan sistem proteksi untuk mengetahui letak terjadinya gangguan, dan memilih pemutus jaringan yang terdekat dari tempat gangguan untuk membuka.Pada gambar berikut (lihat gambar 2.1). jika terjadi gangguan pada titik K, relay - relay proteksi pada CB 1, CB 2, CB 3, merasakan hal tersebut oleh karena arus hubung singkat (I hs) mengalirmelalui ketiga CB tersebut. Selektifitas dari *relay* ini akan menentukan bahwa yang mengalami

gangguan saja yang harus dipisahkan dari sistem yakni hanya CB 3 saja yang bekerja.

Gambar2.1Jaringan tenaga untuk menggambarkan kemampuan selektifitas *Relay* terhadap lokasi gangguan.

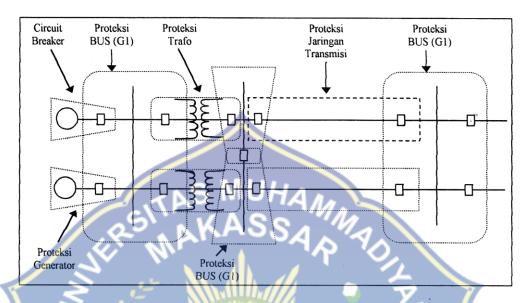
Ket:

CB 1 = Circuit breaker 1

CB2 = Circuit breaker 2

CB3 = Circuit breaker 3

K = lokasi ganguan


d. Andal (Reliable)

Keandalan dari sistem proteksi adalah kemampuan suatu *relay* untuk dapat bekerja dengan baik dan benar pada berbagai kondisi sistem. Keandalan sistem proteksi ini dibagi atas dua unsur yakni:

- Kemampuan *relay* yang selalu bekerja dengan baik pada kondisi abnormal (saat terjadi gangguan, dan
- Kemampuan *relay* untuk tidak bekerja pada kondisi normal.

Pada gambar berikut (lihat gambar 2.2), menunjukkan bahwa garis putus-putus adalah daerah proteksi utama dari suatu jaringan. Terlihat bahwa system elemen-elemen dipisahkan oleh pemutus jaringan,untuk melokalisir setiapkeadaan /gangguan yang mungkin timbul dari jaringan yang

abnormaldenganjaringan sistem yang tidak mengalami gangguan, dalam batas-batas proteksi masing-masing *relay*.

Gambar 2.2 Diagram satu garis pada daerah proteksi utama

Pada gambar 2.2, batas suatu daerah menentukan suatu bagian dan sistem daya sehingga untuk suatu gangguan dimanapun dalam daerah itu sistem perlindungan (yang ditandai dengan garis putus-putus) yang bertanggung jawab akan berindak untuk memisahkan semuanya yang berada dalam daerah itu dari seluruh bagian lain dari sistem. Daerah-daerah yang berdekatan selalu saling menutupi sebagian (overlap).Hal ini sangat diperlukan, karena dengan adanya saling tindih diantara daerah-daerah yang berdekatan tidak ada satu bagian pun dari sistem daya itu yang dibiarkan tanpa perlindungan.

B. Pemberian Sifat Selektif pada Relay

Untuk pemberian sifat selektif pada *relay* proteksi yaitu sifat untuk membedakan atau menentukan bagian mana dari sistem yang mengalami gangguan dapat dilakukan dengan dua cara yakni:

1. Sistem Pilot Relay

Kata pilot berarti pada ujung saluran transmisi dipasang saluran informasi yang dapat menyalurkan informasi timbal balik. Prinsip kerja dari *relay* pilot ini adalah pemberian informasi lewat penghantar-penghantar suatu rangkaian telepon sebagai media fisik, sinyal-sinyal frekuensi tinggi yang digandengan pada saluran transmisi daya itu sendiri dari *relay* ke *relay* yang lainnya. Alat ini dikenal sebagai *PLC atau Power Line Carier*.

2. Sistem Kelambatan Waktu Kerja Relay

Yaitu dengan memberikan kelambatan waktu kerja yang berlainan bagi setiap *relay*, sehingga diperoleh koordinasi kerja yang lebih baik antar *relay*. Jadi untuk mendapatkan selektifitas pada sistem proteksi digunakan kelambatan waktu yang bertingkat (*stepped delay time*).

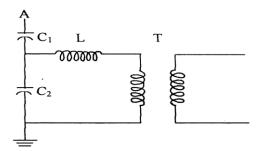
C. Transduser

Transduser adalah sebuah alat yang fungsinya menyerupai dari transformator daya. Arus dan tegangan yang tinggi saat terjadi gangguan hubung singkat pada jaringan transmisi diubah oleh transduser seperti transformator arus dan tegangan ke sinyal-sinyal yang lebih rendah untuk pengoperasian *relay*. Sinyal-sinyal tingkat rendah ini diperlukan karena ada beberapa alasan, yakni tingkat masukan yang lebih rendah ke *relay-relay* memastikan bahwa komponen-komponen yang digunakan untuk konstruksi relay secara fisik adalah kecil jadi harganya lebih murah. Dan alasan lainnya adalah petugas yang bekerja dengan *relay* tersebut dapat bekerja dilingkungan yang aman

1. Transformator Arus

Dalam bentuk skema transformator arus ini dapat dilihat pada gambar 2.3.gulungan primer suatu transformator arus biasanya terdiri dari suatu lilitan tunggal. Lilitan tunggal ini diperoleh dengan memasukkan penghantar primer itu melalui satu atau beberapa jenis teras baja toroid (lilitan primer a dan b).sedangkan lilitan sekundemya yang ditandai dengan a' dan b' merupakan gulungan berlilitan banyak yang digulungkan pada teras toroid tersebut. Rating arus normal untuk sekunder CT telah di standarisasikan pada 5 amper.

Gambar 2.3 Skema hubungan transformator arus pada saluran sistem daya


Ket:

a b = lilitan primer

a' b' = lilitan sekunder

2. Transformator Tegangan

Dalam penggunaan *relay* biasanya dijumpai dua jenis transformator tegangan.Untuk penggunaan tegangan rendah tertentu (tegangan-tegangan sistem disekitar 12 Kv atau lebih rendah), transformator dengan gulungan primer pada tegangan sistem dengan gulungan sekunder pada 67 V. untuk tegangan-tegangan pada tingkat HV dan EHV, digunakan suatu rangkaian pembagi potensi kapasitansi seperti gambar 2.4.

Gambar 2.4 Diagram rangkaian transformator tegangan yang dipadukan dengan Capasitor (CVT) dengan penyetelan induktansi L.

Penyetelan kapasitor untuk mendapatkan tegangan beberapa kilo volt. Tegangan ini diproses lagi oleh transformator untuk mendapatkan tegangan lebih rendah lagi sesuai dengan tingkat tegangan masukan *relay* proteksi.

D. Power Line Carrier (PLC)

PLC atau Power Line Carrier adalah salah satu alat bantu untuk dapat memberikan percepatan (transfer time) secara selektif pada peralatan Proteksi Relay Jarak (Distance Relay). Pada dasarnya prinsip kerja dari relay proteksi ini adalah memberikan kontak yang diterima dari Distance Relay suatu Gardu Induk (GI) diteruskan ke Gardu Induk lainnya dengan memakai media frekuensi radio yang dihubungkan dengan kawat yang bertegangan tinggi. Fungsi dan Pernanan PLC

Perangkat PLC ini memberikan suatu keputusan terbaik dalam usaha pengamanan sistem jaringan secara maksimal dengan menggunakan sistem transfer time. *Transfer time* yang dimaksud adalah selisih waktu pada saat sisi *Receiver* (penerima) menerima instruksi dari sisi *Transmitter* (pemancar) lawan kira-kira 12-10 milidetik. Instruksinya dikirimkan dengan cara menyilangkan (*supressed*)

suatu stand by *frekuensi* pada saat bersamaan dipancarkan pula suatu *frekuensi* yang lebih besar sebagai *frekuensi Tripping*.

E. Kelompok Jenis Relay

Pada sistem-sistem daya didapatkan beraneka ragam *relay*, kebanyakan dari rele tersebut dapat dikelompokkan kedalam lima kategori. Untuk setiap jenis *relay*, akan ditentukan keadaan pada sinyal masukannya (biasanya tegangan dan arus) dan keadaan keluaran rele yang bersesuaian. Kelima kelas *relay* tersebut adalah:

- Besaran relay (magnitude relays)
- Relay terarah (directional Relays)
- Relay perbandingan (ratio relays)
- Relay Diferensial (differensial relays)
- Relay pemandu (pilot relays)

1. Besaran Relay

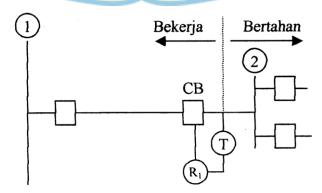
Dalam bentuknya yang paling umum, relay jenis ini adalah besarnya arus masuk kedalam *relay* atau *relay* arus lebih (*Overcurrent Relays*). *Relay* ini memberikan reaksi terhadap besarnya arus masukan, dan bekerja untuk memutuskan (*trip*) CB bila mana besarnya arus melebih nilai tertentu pada *relay* tersebut.

Jika nilai arus primer yang dinyatakan menurut gulungan sekunder CT dapat diperoleh dan studi hubung singkat sistem sedemikian sehingga untuk semua gangguan didalam daerah perlindungan suatu *relay* besarnya arus gangguan didalam daerah perlindungan suatu *relay*, besarnya arus gangguan skunder yang

juga dinyatakan menurut gulungan sekunder akan lebih besar dari pada arus primer, maka gambaran fungsi yang berikut akan memberikan suatu *relay* yang mantap dan aman

/If/>/lpl/.... bekerja

/If/</Ip/.... ditahan


Ket:

Ip = Besarnya arus primer

If = Besarnya arus skunder

2. Relay Terarah

Pada beberapa penggunaan, daerah suatu *relay* meliputi seluruh sistem daya yang terletak hanya pada satu arah saja dan lokasi relay tersebut. Pada gambar 2.5, *relay* RI dituntut bekerja untuk gangguan disebelah kiri letak *relay*, dan bertahan (block) untuk semua keadaan (disebelah kanan). Karena semua keadaan impedansi saluran transmisi sebagian besar reaktif, gangguan disebelah kin RI mempunyai arus yang mengalir dari rel 2 ke rel 1 yang tertinggal terhadap tegangan pada rel 2. *relay* inilah yang disebut terarah, karena kerjanya tergantung pada arah arus terhadap tegangannya.

Gambar 2.5 Diagram segaris yang menunjukkan prinsip kerja *relay* terarah

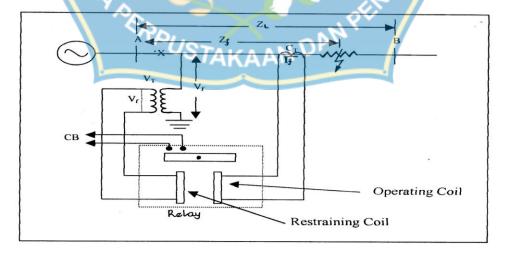
3. Relay Diferensial

Relay Diferensial merupakan pengaman utama pada generator maupun trafo untuk gangguan hubung singkat antar fasa dan fasa tanah untuk generator dengan pertanahan langsung.Prinsip kerja proteksi berdasarkan pada prinsip keseimbangan, yaitu membandingkan arus-arus sekunder dari trafo arus yang terpasang pada terminal peralatan yang diproteksi.

4. Relay Perbandingan

Pada gambar 2.6 digambarkan tentang penerapan dari *relay* perbandingan. Pada beberapa penerapan, perlu diperhatikan agar rele bekerja untuk gangguan yang timbul dalam jarak tertentu dari lokasinya pada saluran manapun yang berasal dari rel 1.Daerahnya dinyatakannya dengan jarak disepanjang saluran, atau dengan impedansi antara rel 1 dan tempat terjadinya gangguan.Jadi daerah perlindungannya adalah sedemikian sehingga panjang suatu impedansi yang lebih kecil dari setelan yang diminta termasuk kedalam daerah itu.

Keadaan ini dapat dinyatakan dengan mudah sebagai suatu persyaratan pada perbandingan antara tegangan dan arus pada lokasi *relay*:


Gambar 2.6 : Karakteristik *relay* impedansi yang menunjukkan daerah perlindungan

F. Relay Impedansi

Relay impedansi adalah relay yang bekerja berdasarkan setting waktu dan jarak lokasi ganguaan ke relay proteksi dengan perbandingan tegangan dan arus gangguan. Relay ini digunakan sebagai alat proteksi pada jaringan transmisi dan dapat digolongkan kedalam relay yang mempunyai dua besaran input. Dimana pengukuran tersebut adalah dengan membandingkan arus gangguan yang dirasakan oleh rele terhadap tegangan dimana relay terpasang sehingga titik tempat terjadinya gangguan dapat diukur.

Pada gambar 2.7 diperlihatkan bagaimana besaran arus dan tegangan dibandingkan dengan suatu" *Balance Beam Relay*". Pada keadaan normal, arus yang mengalir pada "*Restraining Coil*" (Kumparan penahan) sama besarnya dengan arusyang mengalir pada "*Operating Coil*" (Kumparan kerja), maka diperoleh suatu kondisi yang seimbang pada relay. Kondisi ini disebut "*Balance Beam*" (batang dalam keadaan setimbang) dari *relay* yakni:

$$\frac{V}{I} = \frac{n.I_r.Z_L}{I_r} = n Zt$$

Gambar 2.7 Prinsip Kerja *Relay* Impedansi

Ket:

CB = circuit breaker

VT = voltage transformator

A = luas penampan

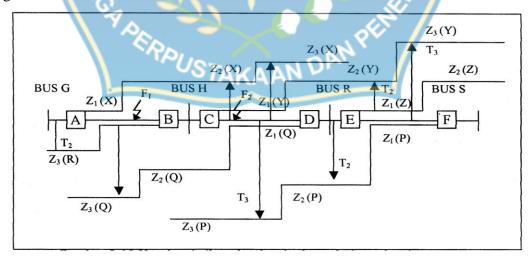
B = luas penampan

ZL = panjang jarak

Pada keadaan yang abnormal, bila suatu gangguan terjadi pada jarak n ZL = ZF dari lokasi dimana *relay* berada, tegangan yang timbul dititik gangguan adalah sama dengan nol sedangkan tegangan di titik *relay* berada adalah ZL. Tegangan titik *relay* ini akan menghabiskan "*Restraining Torque*" (torsi penahan) yang lebih kecil dari "*Operating Torque*" mengakibatkan "Beam" (batang) menutup kontak dan selanjutnya memberikan perintah trip (*Tripping Order*) pada pemutus daya (*Circuit Breaker*).

Ketelitian pengukuran impedansi saluran transmisi dengan rele impedansi banyak dipengaruhi oleh ketelitian trafo arus, trafo tegangan serta oleh *relay* pengamannya sendiri. Dengan mempertimbangkan pengaruh-pengaruh tersebut maka *relay* impedansi biasanya dibuat atas tiga daerah proteksi seperti yang terlihat pada gambar 2.8.

Gambar 2.8 Jangkauan daerah proteksi *relay* impedansi

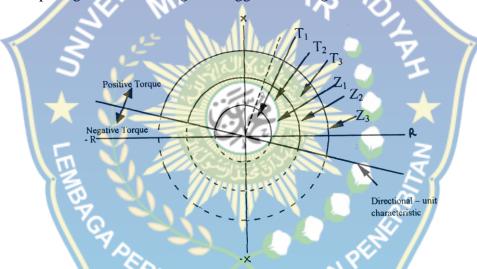

Daerah proteksi I berfungsi sebagai proteksi utama untuk saluran yang dilindunginya dan karena reaksinya yang cepat sehingga reaksinya tergolong sebagai instantananeous *relay* dan daerah proteksi *relay* ini sejauh 80% - 90% dari panjang saluran dari Gardu Induk.

Penyetelan perlambatan waktu untuk daerah proteksi ini (ti) umumnya tanpa perlambatan waktu dengan pengertian bahwa penyetelan waktu operasi adalah nol

Daerah proteksi II digunakan untuk melindungi 15% - 20% bagian dari jaringan yang tidak diproteksi oleh daerah proteksi I ditambah 50% dari saluran jaringan berikutnya dengan perlambatan waktu (t2).

Daerah proteksi III mencakup 50% dari saluran yang tidak terjangkau oleh daerah proteksi II, dengan waktu operasi yang lebih lambat (i\$\ di samping itu di daerah proteksi III masih dapat menjangkau 25% jaringan berikutnya.

Karakteristik waktu bertingkat relay impedansi dapat diperlihatkan pada gambar 2.9.



Gambar 2.9 Karakteristik waktu bertingkat *relay* impedansi.

Misalkan gangguan hubung singkat terjadi pada fi seperti yang ditunjukkan pada gambar 2.9, maka sebagai pengaman utama adalah relay B yang bekerja tanpa perlambatan waktu dan relay A dengan waktu kerja t2.

Dan sebagai pengaman cadangan yaitu *relay* D dengan waktu kerja t2 dan *relay* F dengan waktu kerja t3. Apabila gangguan terjadi di F2 maka sebagai pengaman utama adalah relay C dan *relay* D, pengaman cadangannya adalah *relay* A dengan waktu kerja t2 dan rel F dengan waktu kerja t3.

Bentuk karakteristik operasi dan setting waktu dari *relay* impedansi dapat dilihat pada gambar 2.10 dengan menggunakan diagram RX

Gambar 2.10 Karakteristik Operasi dan perlambatan waktu relay Impedansi type Distance Relay

Karakteristik suatu relay impedansi terarah dalam bidang RX dalam gambar 2.10 menunjukkan suatu garis putus yang dinamakan tempat kedudukan impedansi saluran (*line impedance locus*). Disepanjang garis putus-putus ini dilukiskan impedansi urutan positif dari saluran yang dilindungi itu. Unit terarah dari *relay* itu menyebabkan pemisahan daerah kerja (*trip*) dan bertahan (*block*) oleh suatu garis yang ditarik tegak lurus pada tempat kedudukan impedansi saluran.

Impedansi yang digunakan sebagai dasar penyetelan *relay* impedansi adalah impedansi urutan positif, sedang impedansi saluran transmisi pada sisi sekunder trafo arus (CT) dan trafo tegangan (VT) dapat dihitung dengan rumus :

$$Zs = \frac{Perbandingan\ CT}{Perbandingan\ VT} x\ z_p$$
 (Impedansi saluran transmisi)

Dimana:

- Perbandingan $CT = \frac{Arus\ primer}{arus\ sekunder}$
- Perbandingan VT = Tegangan primer tegangan sekunder
- Zs = Impedansi sisi sekunder CT dan VT

 (Impedansi yang terukur oleh *relay*)
- ZP= Impedansi sisi primer CT dan VT (Impedansi saluran transmisi)
- CT= Current Transformator (Trafo Arus)
- VT= Voltage Transformator (Trafo Tegangan)

Dengan menggunakan rumus di atas besar atau nilai dari impedansi sekunder untuk ketiga daerah proteksi dapat ditentukan.

PROUSTAKAAN DAN PET

BAB III

METODOLOGI PENELITIAN

A. Waktu dan Tempat

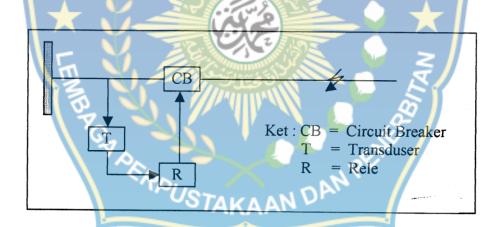
1. Waktu

Penelitian ini akan dilaksanakan selama 3 bulan, mulai dari bulan Desemberr 2014 sampai dengan Maret 2015 sesuai dengan perencanaan waktu yang terdapat pada jadwal penelitian.

2. Tempat

Penelitian dilaksanakan Pada Jaringan Transmisi 150 KV Gardu Induk Bakaru - Tello

B. Langka / step Penelitian


Metode penelitian ini berisikan langkah-langkah yang ditempuh penulis dalam menyusun tugas akhir ini. Metode penelitian ini disusun untuk memberikan arah dan cara yang jelas bagi penulis sehingga penyusunan tugas akhir ini dapat berjalan dengan lancar.

Adapun langkah-langkah yang ditempuh oleh penulis dalam penyusunan tugas akhir ini adalah sebagai berikut:

Metode Penelitian

Mengadakan penelitian dan pengambilan data pada Jaringan Transmisi 150 KV Gardu Induk Bakaru - Tello.Kemudian mengadakan pembahasan/analisa hasil pengamatan dan menyimpulkan hasil analisa tersebut.

C. Gambar rangkaian

Gambar Diagram blok sistem proteksi

Gambar diatas adalah sebuah diagram blok sederhana dari sebuah sistem proteksi. Titik P dimisalkan oleh transduser. Transduser ini akan memberikan sinyal pada *relay*, sehingga *relay* tersebut akan menggerakkan pemutus daya (CB)

Pada saluran kelistrikan, untuk mengisolir bagian yang terkena gangguan digunakan *relay* proteksi, yang masing-masing mempunyai daerah pengaman tersendiri. Sistem ini lebih dikenal sebagai sistem perlindungan (protection sistem).

Dalam sistem penyaluran daya listrik, jika terjadi gangguan maka sensor mengirim sinyal ke *relay* proteksi untuk memerintahkan pemutus daya (circuit breaker) membuka bilamana gangguan tersebut melampaui batas setting yang telah ditentukan pada *relay* proteksi.Pemutus daya ini ditempatkan sedemikian rupa sehingga sistem yang normal terpisah dari sistem yang mengalami gangguan.

BAB IV

HASIL DAN PEMBAHASAN

A. Tinjauan Sistem Proteksi Saluran Transmisis 150 KV

Seperti diketahui bahwa gangguan hubungan singkat pada jaringan transmisi tidak hanya merusak peralatan atau elemen-elemen jaringan, tetapi juga dapat menyebabkan jatuhnya tegangan dan frekuensi sistem, hal ini menyebabkan kerja paralel dari unit pembangkit dan stabilisasi sistem menjadi terganggu. Akibat yang disebabkan oleh gangguan tersebut antara lain:

- 1. Penurunan tegangan yang mengakibatkan rendahnya kualitas teganganlistrik.
- 2. Terganggunya kontinuitas pelayanan daya kepada pelanggan
- 3. Terjadinya kerusakan kepada pelanggan dimana gangguan terjadi,

Mengingat akan hal ini, maka diperlukan sistem pengamanan atau sistem proteksi untuk saluran transmisi utamanya saluran pada tegangan 150 KV. Jenis proteksi yang digunakan sekarang ini adalah jenis proteksi jarak yang menggunakan relay-relay jarak (distance relay).

B. Daftar Relay dan Data Saluran Transmisi

Daftar relay dan data saluran transmisi dapat dilihat pada tabel 3.1 dan 3.2. Konstanta saluran udara dan kabel tanah dalam ohm/km dapat dilihat pada tabel 3.4. Data trafo arus dan trafo tegangan pada tabel 3.5.

TABEL4.1.DAFTAR RELAY JARAK DARI SISTEM SULAWESI-SELATAN

No.	Lokasi Pemasangan Relay	Kode	Pabrik	Tipe Relay
		Relay		
A	SEKTOR BAKARU			
1	GARDU INDUK BAKARU			
1	Penghantar 150 KV Parepare 1	44	Thoshiba	RYL2S
2	Penghantar 150 KV Polmas 2	44	Thoshiba	RYU2S
II.	GARDU INDUK POLMAS	HAM		
1.	Penghantar 150 KV Bakaru 2	44 4	Thoshiba	RYL2S
2.	Penghantar 150 KV Parepare 1	44//	ABB	REL511
III.	GARDU INDUK PAREPARE		工	
1.	Penghantar 150 KV Bakaru 1	44	Thoshiba	RYL2S
2.	Penghantar 1 50 KV Polmas 2	44	ABB/MCGG52	REL511
3.	Penghantar 1 50 KV Pangkep 2	44	T <mark>h</mark> oshiba	RYL2S
4.	Penghantar 150 KV Pangkep 2	44	Thoshiba	RYL2S
5.	Penghantar 150 KV Suppa 1	44	Siemens	7SA511v3
6.	Penghantar 150 KV Suppa 2	441 DA	Siemens	7SA511v3
7.	Penghantar 150 KV Sidrap 1	44	Thoshiba	TC023B
8.	Penghantar 150 KV Sidrap 2	44	Merlin Gerin	SEP AM 2000
IV.	GARDU INDUK SUPPA			
1.	Penghantar 150 KV Parepare 1	44	Siemens	7SA51iv3
2.	Penghantar 150 KV Parepare 2	44	Siemens	7SA511v3

Sumber: PT, PLN (Persero) Wil. VIII UP2B Sistem Sulawesi Selatan

No.	Lokasi Pemasangan Relay	Kode	Pabrik	Tipe Relay
		Relay		
V	GARDU INDUK SIDRAP			
1	Penghantar 150 KV Parepare 1	44	Thoshiba	TCO23B
2	Penghantar 150 KV Parepare 2	44	Merlin Gerin	SEPAM 2000
3.	Penghantar 150 KV Soppeng 1	44	Merlin Gerin	SEPAM 2000
4.	Penghantar 150 KV Soppeng 2	44	Thoshiba	TCO231B
VI	GARDU INDUK SOPPENG	HA	MA	
1.	Penghantar 150 KV Sidrap 1	44	Merlin Gerin	SEPAM 2000
2.	Penghantar 1 50 KV Sidrap 2	44	Thoshiba	TC023/21B
3.	Penghantar 150 KV Bone 1	44	Thoshiba	TCO23/21B
4.	Penghantar 150 KV Bone 2	44	ABB	REL511
5.	Penghantar 150 KV Sengkang 1	44	GEC Alsthom	Quadramhe SHPM 101
6.	Penghantar 150 KV Sengkang 2	44	GEC Alsthom	Quadramhe SHPM 101
VII	GARDU IND <mark>UK BON</mark> E			
1.	Penghantar 150 KV Soppeng 1	44	Thoshiba	TCO23/21B
2.	Penghantar 150 KV Soppeng 2	44) D	ABB	REL511
VIII	GARDU INDUK SENGKANG			
1.	Penghantar 150 KV Soppeng 1	44	GEC Alsthom	Quadramhe SHPM 101
2.	Penghantar 150 KV Soppeng 2	44	GEC Alsthom	Quadramhe SHPM 101

Sumber: PT. PLN (Persero) Wil. VIII UP2B Sistem Sulawesi Selatan

No.	Lokasi Pemasangan Relay	Kode	Pabrik	Tipe Relay
		Relay		
В	SEKTOR TELLO			
I	GARDU INDUK PANGKEP			
1	Penghantar 150 KV Parepare 1	44	Thoshiba	RYL2S
2	Penghantar 150 KV Parepare 2	44	Thoshiba	RYL2S
3.	Penghantar 150 KV Bosowa 1	44	Thoshiba	RYL2S
4.	Penghantar 150 KV Tello 2	44	Thoshiba	RYL2S
II	GARDU INDUK BOSOWA	AM		
1.	Penghantar 150 KV Pangkep 1	44	Thoshiba	MXL1E
2.	Penghantar 150 KV Tello 1	44	Thoshiba	MXL1E
ш	GARDU INDUK TELLO			
1	Penghantar 150 KV Bosowa 1	44	Thoshiba	RYL2S
2.	Penghantar 150 KV Pangkep 2	44	Thoshiba	RYL2S
3.	Penghantar 150 KV Tello lama 2	44	Thoshiba	RYL2S
4.	Penghantar 150 KV Sungguminasa 1	44	Thoshiba	RYL2S
5.	Penghantar 150 KV Sungguminasa 2	44	Thoshiba	MXL1E
IV	GARDU COSTA INDUK	DA		
	SUNGGUMINASA			
1.	Penghantar 150 KV Sungguminasa 1	44	Thoshiba	MXL1E
2.	Penghantar 150 KV Sungguminasa 2	44	Thoshiba	MXL1E
3.	Penghantar 150 KV Takalar I	44	Thoshiba	MXLIE
4.	Penghantar 150 KV Takalar 2	44	Thoshiba	MXL1E

Sumber: PT. PLN (Persero) Wil VIIIUP2B Sistem Sulawesi Selatan

No.	Lokasi Pemasangan Relay	Kode	Pabrik	Tipe Relay
		Relay		
V	GARDU INDUK TAKALAR			
1	Penghantar 150 KV Takalar 1	44	GEC Aisthom	Quadramho
				SHPM 101
2	Penghantar 150 KV Takalar 2	44	GEC Aisthom	Quadramho
VI	GARDU INDUK TALLO LAMA	AM		SHPM 101
1.	Penghantar 150 KV Tello 1	44	Thoshiba	RYL2S
2.	Penghantar 150 KV Tello 2	44	Thoshiba	RYL2S

Sumber: PT. PLN (Persero) Wil. VI11UP2B Sistem Sulawesi Selatan

Tabel 4.1 memperlihatkan daftar relay jarak yangdigunakan sekarang ini pada sistem Sulawesi Selatan dimana lokasi pemasangan relaynya dibagi atas 2 sektor yaitu sektor Tello dan sektor Bakaru. Kedua sektor tersebut meliputi beberapa gardu induk yaitu: TAKAAN DAN PEN

1. Sektor Bakaru Meliputi:

- Gardu Induk Bakaru
- Gardu Induk Polmas
- Gardu Induk Parepare
- Gardu Induk Suppa
- Gardu Induk Sidrap e.
- Gardu Induk Soppeng f.
- Gardu Induk Bone

- h. Gardu Induk Sengkang
- 2. Sektor Tello meliputi:
 - Gardu Induk Pangkep
 - Gardu Induk Bosowa b.
 - Gardu Induk Tello
 - Gardu Induk Sungguminasa d.
 - Gardu Induk Takalar
 - Gardu Induk Tallo Lama

Seperti terlihat pada tabel bahwa tipe relay jarak yang digunakan sekarang ini dalam sistem saluran transmisi 150 KV Sulawesi Selatan ada 7 jenis dengan kode relay 44. Ketujuh tipe relay ini adalah:

- RYL25, Pabrik Thoshiba
- REL511, Pabrik ABB
- 7SA511V3, Pabrik Siemens
- SEP AM 2000, Pabrik Merlin Gerin d.
- Quadramhe: SHPM 101, Pabrik GECAlsthom f.
- TCO23B, Pabrik Thoshiba

Tabel 4.2 Data Saluran Transmisi

No.	Gardu Induk		Tegangan	Jarak	Jenis Penghantar
	Dari	Ke	(KV)	(KM)	
I	Bakaru	Pinrang	150	58,50	ACSR 2 X 240 mm ²
2	Bakaru	Parepare	150	84,90	ACSR 2 X 240 mm ²
3	Bakaru	Polewali	150	50,60	ACSR 2 X 240 mm ²
4	Polewali	Parepare	150	91,30	ACSR 2 X 245 mm ²
5	Parepare	Suppa	150	7,50	ACSR 2X240 mm ²
6	Pinrang	Parepare	150	26,40	ACSR 2 X 240 mm ²
7	Parepare	Barru	150	44,80	ACSR 2 X 240 mm ²
8	Parepare	Pangkep	150	89,20	ACSR 2X240 mm ²
9	Parepare	Sidrap	150	18,49	ACSR 2X240 mm ²
10	Sidrap	Soppeng	150	52,90	ACSR 2 X 240 mm ²
11	Soppeng	Bone	150	43,27	ACSR 2 X 240 mm ²
12	Sengkang	Soppeng	150	35,34	ACSR SEBRA 2 X
		- MM			400 mm^2
13	Barru	Pangkep	150	44,40	ACSR 2X240 mm ²
14	Pangkep	Tello	150	44,25	ACSR 2 X 240 mm ²
15	Pangkep	Bosowa	150	30,42	ACSR 2 X 240 mm ²
16	Bosowa	Tello	150	23,67	ACSR 2X240 mm ²
17	Tello	Tello Lama	150	6,20	ACSR 2X240 mm ²
18	Bone	Sinjai	150	110,0	ACSR 2X240 mm ²
19	Sinjai	Bulukumba	150	68,00	RENCANA
20	B <mark>u</mark> lukumba	Bantaeng	150	32,00	RENCANA
21	Bantaeng	Jeneponto	150	31,00	RENCANA
22	Jeneponto	Takalar	150	52,00	RENCANA
23	Takalar	Tello	150	37,30	ACSR ZEBRA 2 X
		CUSTAKA	ANDA		430 mm^2
24	Takalar	Sungguminasa	150	26,50	ACSR ZEBRA 2 X
					430 mm^2
25	Sungguminasa	Tello	150	10,90	ACSR ZEBRA 2 X
					430mm ²

Sumber: PT. PLN (Persero) Wil. VIII UP2B Sistem Sul-Sel

Tabel 4.3 Daftar relay Jarak Pada Sistem Kelistrikan Sulawesi Selatan

No.	Lokasi Pemasangan Relai	Pabrik	Type	CT <p s))<="" th=""><th>PT (P/S)</th><th>Ket</th></p>	PT (P/S)	Ket
I	GI. Bakaru Pengbantar Parepare 1 Penghantar Polewali 2	Toshiba Toshiba	RYL2S RYL2S	600/5]50000/]10 150000/110	
II	GI. Polewali Penghantar Bakaru 2 Penghantar Parepare 2	Toshiba ABB	RYL2S REL511	800/5 800/5	150000/110 150000/110	
Ш	GI. Parepare Penghantar Polewali 2 Penghantar Bakaru 1 Penghantar Pangkep 1,2 Penghantar Sidrap 1 Penghantar Sidrap 2 Penghantar Suppa 1,2	ABB/MCG652 Toshiba Toshiba Toshiba Merlin Gerin Siemens	REL511 RYL2S RYL2S TCO23B Sepam 2000 7SA511v3	600/5 600/5 600/5 400/5 800/5 600/5	150000/110 150000/110 150000/110 35000Q/UO 150000/110 150000/110	-1
IV	GI. Suppa Penghantar Parepare 1,2	Siemens	7SA511v3	600/5	150000/110	
V	GI. Sidrap Penghantar Parepare 1 Penghantar Parepare 2 Penghantar Soppeng 1 Penghaniar Soppeng 2	Toshiba Merlin Gerlm Merlin Toshiba	TCO23B Sepam 2000 Sepam 2000 TC023B	800/5 400/4 400/5 800/5	150000/110 150000/110 150000/110 150000/110	
V7	GI. Soppeng Penghantar Sidrap 1 Penghantar Sidrap 2 Penghantar Bone 1 Penghantar Bone 2 Penghantar Sengkang 1,2	Toshiba	Sepam 2000 TC023/2IB TC023/21B REL511 Quadramho SHPM 101	800/5 800/5 40(V5 400/5 800/5	150000/1101 50000/110] 50000/110 150000/110 150000/110	
VII	GI. Sengkang Penghantar Soppeng 1.2	GEC Alsthom	Quadramho SHPM 101	1000/1	150000/110	
VIII	GI Bone Penghantar Soppeng 1 Penghantar Soppeng 1,2	Toshiba ABB	TC023/21B REL511	800/5 800/5	150000/110 150000/110	
IX	GI. Pangkep Penghantar Parepare 1,2 Penghantar Bosowa I Penghantar Tello 2	Toshiba Toshiba Toshiba	RYL2S RYL2S RYL2S	600/5 600/5 600/5	150000/110 150000/110 150000/110	

X	GI. Bosowa	Toshiba	MXL1E	600/5	150000/110	
	Penghantar Pangkep 1	Toshiba	MXL1E	600/5	150000/110	
	Penghantar Tello 1					
XI	GI. Tello	Toshiba	RYL2S	600/5	150000/no	
	Penghantar Bosowa 1	Toshiba	RYL2S	600/5	150000/110	
	Penghantar Pangkep 2	Toshiba	RYL2S	400/5	150000/110	
	Penghantar Tellolama 1 .2	Toshiba	MXL1E	1600/5	150000/110	
	Penghantar S. Minasa 1,2					
XII	GI. Sunggununasa	Toshiba GEC	MXL1E	1600/5	150000/110	
	Penghantar Tello 1.2	Alsthom	Quadramho	1600/5	150000/110	
	Penghantar Takalar 1 .2		SHPM 101			
X11I	GI. Tafcalar	Toshiba	MXL1E	1600/5	150000/110	
	Penghantar S. Minasa 1.2					
XIV	GI. Tellolama	Toshiba	RYL2S	600/5	150000/110	
	Penghantar Tello 1,2		1			

Sumber: PT. PLN (Persero) Wil. VIIIUP2B Sistem Sulawesi Selatan

Tabel 4.4 Konstanta Saluran Transmisi

PENGHANTAR	TEGANGAN	R(OHM/km)	X (Ohm/km)
1 - 3	(KV)		
ACSR 240 mm ²	150	0,11830	0,4239
ACSR 400 mm ²	150	0,06691	0,40263
ACSR 430 mm ²	150	0,03970	0,2720
XLPE 325 mm ²	70	0,23601	0,4333

Sumber: PT. PLN (Persero) Wil. VIIIUP2B Sistem Sulawesi Selatan

Tabel 4.5 Data Trafo Arus Dan Trafo Tegangan

No.	Gardu Induk	Trafo Arus (CT)		Trafo Tegangan (PT)	
		P(A)	S(A)	P(KV)	S(KV)
1	BAKARU	600	5	150/V3	110/V3
2	POLMAS	800	5	150/V3	110/V3
3	PAREPARE	800-600-400	5	150/V3	110/V3

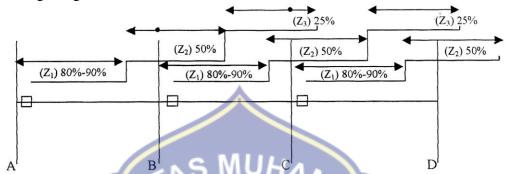
4	SUPPA	600	5	150/V3	110/V3
5	SIDRAP	800-400	5	150/V3	110/V3
6	SOPPENG	800-100	5	150/V3	110/V3
7	BONE	800	5	150/V3	110/V3
8	SENGKANG	1000	1	150/V3	110/V3
9	PANGKEP	600	5	150/V3	110/V3
10	BOSOWA	600	5	150/V3	110/V3
11	TELLO	1600-600-400	5 M	150/V3	110/V3
12	SUNGGUMINASA	1600	54	150/V3	110/V3
13	TAKALAR	1600	5	150/V3	110/V3
14	TALLO LAMA	600	5	150/V3	110/V3

Sumber: PT. PLN (Persero) Wil. VIIIUP2B Sistem Sulawesi Selatan

Tabel 4.6 Setting Impedansi PLN

Lokasi Relai	Daerah Proteksi	Setting PLN	
D		Z1,Z2,Z3(Q)	Waktu (detik)
3	2	3	4
I. GI Bakaru	Zl	2,6500	Inst.
Penghantar Pare 1	Z2	4,6491	0,4
	Z3	8,0303	0,8
Penghantar	ZI STAKAA	2,2000	Inst
Polewali 2	Z 2	3,4920	0,4
	Z3	3,4920	0,4
11. GI Polewali	Z3	3,8053	Inst.
Penghantar Pare 2	Z2	6,4500	0,4
	Z3	6,4500	0,4
Penghantar Bakaru 2	Zl	2,2000	Inst.
	Z 2	3,2835	0,4
	Z3	3,2835	0,4
ID. GI Parepare	Zl	2,6500	Inst.
	Z 2	3,9552	0,4
Penghantar Bakaru 1	Z3	3,9552	0,4
Penghantar	Z1 Z2 Z3	3,8033	Inst

Polewali 2		6,4500	0,4
		6,4500	0,4
Penghantar Pangkep	Zl	2,8000	Inst.
1,2	Z2	4,1791	0,4
	Z3	6,0869	0,8
Penghantar	Zl	0,7358	Inst
Sidrap 1,2	Z2	2,4200	0,4
	Z3	4,2615	1,2
Penghantar	Zl	0,2323	Inst
Suppa 1,2	Z2	0,3485	0,4
	Z3	0,3485	0,4
IV. GI Bosowa	Zl		
	Z2		
Penghantar	\mathbb{Z}_3	41	
Pangkep 1		HAMA	
Penghantar Tdlo 1	ZI KAS	SAMA	
45	Z2\\	CY QF	
	Z3		
	1 1 V 2		-
	2	3	4
V. GI Pangkep	ZI		inst.
Penghantar Parepa		4,9107	0,8
1,2	Z3	8,0882	1,4
Penghantar Tello	1 ZI		Inst
(Via Bosowa)	Z2 /// Ulie U	2,0588	0,4
70	Z3 ///		0,8
Penghantar Tello 2	Z1 //	1,6757	Inst.
G	Z 2	2,5136	0,4
YA.	Z3		<u> </u>
VL GI Tello	Zl	1,4000	Inst.
	ZZJSTAKAA	2,0895 3,5000	0,4
Penghantar	Z3 TANAP	3,5000	1,1
Pangkep 1			
(Via Bosowa)			
Penghantar	Zl	1,6757	Inst
Pangkep 2	Z2		
	Z3		
Penghantar	Zl	0,1950	Inst.
Tello Lama	Z2	1,5000	0,4
	Z3	1,5000	0,4
Penghantar	Zl	0,5207	Inst
Sungguminasa 1,2	Z2		
	Z3		
VII GI S. Minasa	Zl	0,5260	Inst.


	Z 2	0,9360	0,4
Penghantar Tello 1,2	Z3	5,9300	0,4
Penghantar Takalar 1,2	Zl	1,36	Inst
	Z 2	2,3	0,4
	Z3	3,4	0,4
Vin GI Tello Lama	Zl	0,1950	Inst.
Penghantar	Z2	1,3000	0,4
Tello 1,2	Z3	3,9000	1,1
IX GI Sidrap	Zl	0,7358	Inst.
Penghantar	Z2	5,5757	0,4
Parepare 1,2	Z3	6,4285	1,4
Penghantar	Zl	2,1052	Inst
Soppeng 1,2	Z2	3,1578	0,4
	Z3	4,8083	0,8
251 AKASSA MA			

1	2	3	4
X. GI Soppeng	Zl	1,3728	Inst
Penghantar Sengkang	$\mathbb{Z}2$	<mark>2,9</mark> 760	0,4
5 5	Z 3	2,9760	0,4
Penghantar Bone 1,2	Zl	1,7219	Inst
	Z2	5,2380	0,4
	Z3	5,2380	0,4
Penghantar Sidrap 1,2	ZI	2,1052	Inst
	Z 2	2,6939	0,4
2	Z3	4,8083	0,8
XI GI Sengkang	Z1 ////	8,5689	Inst
Penghantar	Z2	17,4794	0,4
Soppeng 1,2	Z3	25,3889	<mark>1</mark> ,1
XII GI Bone	Zl	1,7219	Inst.
Penghantar	Z2 Z3 / S T A L A A	3,4061	0,4
Soppeng 1,2	Z3/STAKAA	8,7542	1,1

Sumber: PT. PLN (Persero) Wil. VIII UP2B Sistem Sulawesi Selatan

C. Perhitungan Dan Setting Relay Impedansi

Seperti diterangkan dalam bab 2.3 maka setting rele impedansi dapat dihitungsebagai berikut:

Gardu induk A ke gardu induk D

Daerah I=(80 % X ZAB) x n

Daerah II=(ZAE + (50 % x ZBC)) x n

Daerah III= $(ZAB + ZBC + 25 \% + ZCD) \times n$

Gardu induk B ke gardu induk D

Daerah I=(80 % X ZBC) x n

Daerah II=(ZBC + (50 % x ZCD)) x n

Daerah III=(ZBC + 125 % + ZCD) x n

Gardu induk C ke gardu induk D

Daerah I=(80 % X ZCD) x n

Daerah II=(150 % x ZCD) x n

Dimana:

Z=Impedansi saluran transmisi (Ohm/km)

 $n = n_{CT}/n_{VT}$

Untuk menentukan impedansi yang diukur oleh rele atau impedansi sisi sekunder (Zs), terlebih dahulu harus ditentukan perbandingan antara trafo arus (CT) dan trafo tegangan (VT) yaitu :

AN DAN PE

$$Perbanding an CT_1 = \frac{400}{5} = 80$$

$$CT_2 = \frac{600}{5} = 120$$

$$CT_3 = \frac{800}{5} = 160$$

$$CT_4 = \frac{1000}{5} = 1000$$

$$CT_5 = \frac{1600}{5} = 320$$

PerbandinganVT=
$$\frac{150.000}{110}$$
= 1363,636

Dengan menggunakan rumus;

$$Z_s = Z_p = \frac{Perbandingan CT}{perbandingan VT} \times Z_s$$

Dimana:

Z_s=Impedansi sekunder trafo

Z_p =Impedansi primer trafo

Z_L=Impedansi line transmisi

Maka impedansi sisi sekunder adalah:

$$Z_{S1} = \frac{80}{1363,636} \times (0,11830 + j0,4239)$$

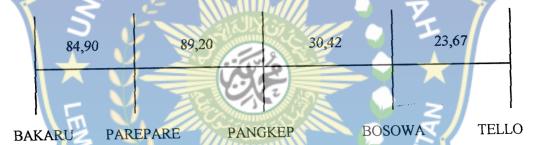
$$=0,059 \text{ X } (0,440 \angle 74,40^{\circ})$$

$$Z_{S2} = \frac{120}{1363,636} x (0,11830 + j0,4239)$$

$$=0.088 \text{ X } (0.440 \angle 74.40^{\circ})$$

$$=0.038 \angle 74.40^{\circ} \text{ Ohm/Km}$$

$$Z_{S3} = \frac{160}{1363,636} x (0,11830 + j0,4239)$$
$$= 0,117 \ X (0,440 \angle 74,40^{\circ})$$


$$=0.050 \angle 74.40^{\circ} \text{ Ohm/Km}$$

$$Z_{S4} = \frac{1000}{1363,636} x (0,11830+j0,4239)$$

$$= 0.235 \text{ X} (0.440 \angle 74.40^{\circ})$$

Besar setting masing-masing daerah proteksi adalah:

1. Jika ditinjau dari arah G.I Bakaru ke G.I Tello pada penghantar 1

a. Besar setting rele impedansi pada G.I Bakaru adalah:

Daerah II = (panjang saluran Bakaru - Parepare + 50 % panjang saluran Pare-

$$= (84.9 + (0.5 \times 89.25)) \times 0.038$$

=4,9219 Ohm

Daerah III=(panjang saluran Bakaru - Parepare + panjang saluran Parepare -

Pangkep + 25 % panjang saluran Pangkep-Bosowa) x Z_s

$$=(84.9 + 89.2 + (0.25 \times 30.42)) \times 0.038$$

= 6,9047 Ohm

b. Besar setting rele impedansi pada G.I Parepare

$$\label{eq:Daerah I} \textbf{ Parepare - Pangkep)} \ x \ Z_s$$

$$= (80 \% x 89,20) x 0,038$$

= 2,7116 Ohm

Daerah II = (panjang saluran Parepare - Pangkep + 50 % panjang saluran

Pangkep-Bosowa) x Z_s

$$=(89,20 + (0,5 \times 30542)) \times 0,038$$

=3,9675 Ohm

Daerah III= (panjang saluran Parepare-Pangkep + panjang saluran Pangkep -

Bosowa + 25 % panjang saluran Pangkep-Tello) x Z_s

$$=(89,20 + 30,42 + (0,25 \times 23,67)) \times 0,038$$

=4,7704 Ohm

c. Besar setting rele impedansi pada G.I Pangkep

Daerah I = (80 % x panjang saluran Pangkep-Bosowa) x Z_s

$$=(80 \% x 30,42) x 0,038$$

= 0.9247 Ohm

Daerah II=(panjang saluran Pangkep-Bosowa + 50 % panjang saluran

Bosowa-Tello) x Z_s

$$=(30,42 + (0,5 \times 23,67)) \times 0,038$$

=2,2802 Ohm

Daerah III=(panjang saluran Pangkep-Bosowa+125 % panjang saluran Bosowa-Tello) x Z_s

$$=(30,42+(1,25 \times 23,67)) \times 0,038$$

=2,2802 Ohm

d. Besar setting rele impedansi pada G.I Bosowa

Daerah I = $(80 \% \text{ x panjang saluran Bosowa - Tello}) \text{ x } Z_s$

$$=(80 \% \times 23,67) \times 0,038$$

=0,7195 Ohm

Daerah II = 150 % panjang saluran Bosowa-Tello x Z_s

$$= (1.5 \times 23.67) \times 0.038$$

= 1,3491 Ohm

2. Jika ditinjau dari arah G.I Bakaru ke G.I Tello pada penghantar 2

a. Besar setting rele impedansi pada G.I Bakaru adalah:

Daerah I = $(80 \% \text{ x panjang saluran Bakaru- Polewali}) \text{ x } Z_s$

$$=(80 \% \times 50,60) \times 0,038$$

=1,5382 Ohm

$$=(50,60 + (0,5 \times 91,30)) \times 0,038$$

= 3,8309 Ohm

Daerah III=(panjang saluran Bakaru - Polewali + panjang saluran Polewali -

Parepare + 25 % panjang saluran Parepare-Pangkep) x Z_s

$$= (50,60 + 91,30 + (0,25 \times 89,20)) \times 0,038$$

=6,2396 Ohm

b. Besar setting rele impedansi pada G.I Polewali

Daerah I = (80 % x panjang saluran Polewali - Parepare) x
$$Z_s$$

$$=(80 \% \times 91,30) \times 0,050$$

=3,6520 Ohm

Daerah II = (panjang saluran Polewali - Parepare + 50 % panjang saluran

Parepare-Pangkep) x Z_s

$$=(91,30 + (0.5 \times 89,20)) \times 0.050$$

=6,7950 Ohm

DaerahIII =(panjangsaluranPolewali-Parepare+panjangsaluran

Parepare-

$$=(91,30 + 89,20 + (0,25 \times 44,25)) \times 0,050$$

=9,5781 Ohm

c. Besar setting rele impedansi pada G.I Parepare

Daerah I =
$$(80 \% \text{ x panjang saluran Parepare - Pangkep}) \text{ x Z}_s$$

$$= (0.8 \times 89.20) \times 0.038$$

=2,711 Ohm

Daerah II=(panjang saluran Parepare-Pangkep+ 50 % panjang saluran $Pangkep\text{-Tello}) \ x \ Z_s$

$$= (89,20 + (0,5 \times 44,25)) \times 0,038$$

=4,2303 Ohm

Daerah III = (panjang saluran Parepare-Pangkep +125 % panjang saluran $\label{eq:panjang} \text{Pangkep-Tello}) \times \textbf{Z}_s$

$$=(89,20 + (1,25 \times 44,25)) \times 0,050$$

d. Besar setting rele impedansi pada G.I Pangkep

Daerah I =(80 % x panjang saluran Pangkep-Tello) x Z_s

$$= (80 \% \times 44,25) \times 0,038$$

= 1,3452 Ohm

Daerah II =150 % x panjang saluran Pangkep-Tello) x Z_s

$$= (1,5 \times 44,25)) \times 0,038$$

3. Jika ditinjau dari arah G.I Tello ke G.I Bakaru pada penghantar 1

a. Besar setting rele impedansi pada G.I Tello adalah:

Daerah I =
$$(80 \% \text{ x panjang saluran Tello - Bosowa}) \text{ x } Z_s$$

= $(80 \% \text{ x } 23,67) \text{ x } 0,038$
= $0,7195 \text{ Ohm}$

 $\label{eq:panjangsaluran} Daerah II = & (panjangsaluran Tello-Bosowa+50\% panjangsaluran Bosowa-Pangkep) \ x \ Z_s$

$$=(23,67 + (0,5 \times 30,42)) \times 0,038$$

=1,4774 Ohm

Daerah III = (panjang saluran Tello - Bosowa + panjang saluran Bosowa-

Pangkep + 25 % panjang saluran Pangkep-Parepare)x Z_s

$$=(23,67 + 30,42 + (0,25 \times 89,20)) \times 0,038$$

=2,826 Ohm

b. Besar setting rele impedansi pada G.I Bosowa

Daerah I = $(80 \% \text{ x panjang saluran Bosowa - Pangkep}) \text{ x } Z_s$ = (0.8 x 30.42) x 0.03 8 = 0.9247 Ohm

Daerah II = (panjang saluran Bosowa - Pangkep + 50 % panjang saluran Pangkep-Parepare) x Z_s

$$=(30,42 + (0,5 \times 89,20)) \times 0,038$$

=2,8507 Ohm

Daerah III=(panjang saluran Bosowa-Pangkep + panjang saluran Pangkep-Parepare + 25 % panjang saluran Parepare-Bakaru) x Z_s

$$=(30,42 + 89,20 + (0,25 \times 84,90)) \times 0,038$$

c. Besar setting rele impedansi pada G.I Pangkep

Daerah I = $(80 \% \text{ x panjang saluran Pangkep - Parepare}) \text{ x } Z_s$

 $= (0.8 \times 89.20) \times 0.038$

= 2,7116 Ohm

Daerah II = (panjang saluran Pangkep-Parepare + 50 % panjang saluran Parepare - Bakaru) x Z_s

$$=(89,20 + (0,5 \times 84,90)) \times 0,038$$

= 5,0027 Ohm

Daerah III=(panjang saluran Pangkep-Parepare + 125 % panjang saluranParepare-Bakaru) x Z_s

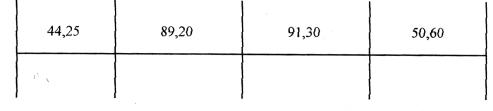
$$=(89,20 + (1,25 \times 84,90)) \times 0,038$$

= 7,4223 Ohm

d. Besar setting rele impedansi pada G.I Parepare

Daerah I = (80 % x panjang saluran Parepare-Bakaru) x Z_s

$$= (0.8 \times 84.90) \times 0.038$$


=2,5809 Ohm

Daerah II =150 % x panjang saluran Parepare-Bakaru) x Z_s

$$= (1,5 \times 84,90)) \times 0,038$$

=4,8393 Ohm

4. Jika ditinjau dari arah G.I Teilo ke G.I Bakaru pada penghantar 2

TELLO PAI

PANGKEP

PAREPARE

POLEWALI

BAKARU

a. Besar setting rele impedansi pada G.I Telio adalah:

Daerah I =
$$(80 \% \text{ x panjang saluran Tello - Pangkep}) \text{ x } Z_s$$

= $(0.8 \text{ x } 44.25) \text{ x } 0.038$
= 1.3452 Ohm

Daerah II=(panjangsaluranTello-Pangkep +50% panjang saluranPangkep-

$$=(44,25 + (0,5 \times 89,20)) \times 0,038$$

Daerah III = (panjang saluran Tello - Pangkep + panjang saluran Pangkep-

Parepare + 25 % panjang saluran Parepare-Polewali)x Z_s

$$=(42,25 + 89,20 + (0,25 \times 91,30)) \times 0,038$$

= 5,9384 Ohm

b. Besar setting rele impedansi pada G.I Pangkep

Daerah I = $(80 \% \text{ x panjang saluran Pangkep-Parepare}) \times Z_s$

$$= (0.8 \times 89,20) \times 0.038$$

= 2,7116 Ohm

Daerah II = (panjang saluran Pangkep-Parepare+ 50 % panjang saluran Parepare-Polewali) x Z_s

$$= (89,20 + (0,5 \times 91,30)) \times 0,038$$

= 5,1243 Ohm

Daerah III=(panjang saluran Pangkep-Parepare + panjang saluran Parepare-Polewali + 25 % panjang saluran Polewali-Bakaru) x Z_s

c. Besar setting rele impedansi pada G.I Pangkep

Daerah I = $(80 \% \text{ x panjang saluran Parepare-Polewali}) \text{ x } Z_s$ = (0.8 x 91.30) x 0.038

= 2,7755 Ohm

Daerah II = (panjang saluran Parepare-Polewali + 50 % panjang saluran Polewali-Bakaru) x $Z_{\rm s}$

$$= (91,30 + (0,5 \times 50,60)) \times 0,038$$

=4,4308 Ohm

Daerah III = (panjang saluran Parepare-Polewali + 125 % panjang saluran Polewali - Bakaru) x Z_s

$$=(91,30 + (1,25 \times 50,60)) \times 0,038$$

= 5,8729 Ohm

d. Besar setting rele impedansi pada G.I Polewali

Daerah I = $(80 \% \text{ x panjang saluran Polewali-Bakaru}) \text{ x } Z_s$

$$= (0.8 \times 50.60) \times 0.050$$

=2,024 Ohm

Daerah II =150 % x panjang saluran Polewali-Bakaru) x Z_s

$$=(1,5 \times 50,60)) \times 0,050$$

=3,795 Ohm

Untuk selanjutnya, hasil perhitungan dapat dilihat pada tabel-tabel berikut:

Tabel 4.1 Hasil perhitungan setting rele impedansi arah G.I Bakaru ke G.I Tello pad penghantar l.

GARDU	PENYETELAN IMPEDANSI (OHM)		
INDUK	DAERAH I	DAERAH II	DAERAH III
BAKARU	2,5809	4,9219	6,9047
PAREPARE	2,7116	3,9675	4,7704
PANGKEP	0,9247	2,2802	2,2802
BOSOWA	0,7195	1,3491	0

Tabel 4.21 Hasil perhitungan setting rele impedansi arah G,I Bakaru ke G.I Tello pada penghantar 2.

GARDU INDU	K	PENYETELAN IMPEDANSI (OHM)		
聖	1	DAERAH I	DAERAH II	DAERAH III
BAKARU		1,5382	3,8309	6,2396
POLEWALI	V,	3,6520	6,7950	9,5781
PAREPARE		2,7116	4,2303	5,4914
PANGKEP	_	1,3452	2,5222	

Tabel 4.3Hasil perhitungan setting rele impedansi arah G.I Tello ke G.I Bakaru pada penghantar 1.

GARDU INDUK	PENYETELAN IMPEDANSI (OHM)		
	DAERAH I	DAERAH II	DAERAH HI
TELLO	0,7195	1,4774	2,9028
BOSOWA	0,9247	2,8507	5,3521
PANGKEP	2,7116	5,0027	7,4223
PANGKEP	2,5809	4,8393	-

Tabel 4.4 Hasil perhitungan setting rele impedansi arah G.I Tello ke G.I Bakaru pada penghantar 2.

GARDU TNDUK	PENYETELAN IMPEDANSI (OHM)		
5	DAERAH I	DAERAH II	DAERAH III
TELLO	13452	3,3763	5,9384
PANGKEP	2,7116	5,1243	7,3397
PAREPARE	2,7755	4,4308	5,8729
POLEWALI	2,024	3,795	18/3

D. Penyetelan Waktu Kerja

Untuk zone 1 (Tl): tanpa perlambatan waktu

Untuk zone 2 (T2): setting waktu 0,2 detik

Untuk zone 3 (T3): setting waktu 0,4 detik

E. Evaluasi Sistem Proteksi pada Saluran Transmisi 150 KV

Berdasarkan hasil perhitungan dan data yang ada maka dievaluasi setting rele PLN Wilayah VIII G.I. Bakaru - G.I. Tello pada jaringan 150 KV, seperti terlihat pada tabel 4.23

Tabel 4.5 Evaluasi setting hasil perhitungan dengan setting PLN (G.I Tello - G.I. Bakaru)

Lokasi Relai	Daerah Proteksi	Hasil Perhitungan	Setting PLN
LUKASI NCIAI	Daci all Fluicksi		
1	S MU	Z1,Z2,Z3(Q)	Z1,Z2,Z3(Q)
1	2	34//	4
I. GI Bakaru	ZYKAS	2,5809	2,6500
Penghantar	Z2 \ \	4,9219	4,6491
Pare 1	Z3	6,9047	8,0303
Penghantar	Zl	1,5382	2,2000
Polewali 2	Z2	3,8309	3,4920
	Z 3	6,2369	3,492 <mark>0</mark>
TL GT Polewali	Zl	3,6520	3,8053
Penghantar Pare 2	Z2	6,7950	<mark>6,450</mark> 0
	Z3 (2) (2)	9,5781	6,4500
Penghantar Penghantar	Zl	2,024	2,2000
Bakaru 2	Z 2	3,795	3,2835
115	Z3 ///////////////		3,2835
		20	
HI. GI Parepare	Zl	2,5809	2,6500
Penghantar	Z2	4,8393	3,9552
Bakaru 1	Z3	180	3,9552
Penghantar	$Zl^{\prime\prime}$	2,7755	3,8033
Polewali 2	ZI STAKAA	4,4308	6,4500
	Z3	5,5729	6,4500
Penghantar	Zl	2,7116	2,8000
Pangkep 1,2	Z2	3,9675	4,1791
	Z3	4,7704	6,0869
IV. GI Bosowa	Zl	0,9247	
Penghantar	Z 2	2,8507	
Pangkep 1	Z3	5,3501	
Penghantar	Zl	0,7195	
Tello 1	Z2	1,3491	
	Z3	,	
L	l		

1	2	3	4
V. GI Pangkep	Zl	2,7116	2,7500
Penghantar	Z 2	5,0027	4,9107
Parepare 1,2	Z3	7,4223	8,0882
Penghantar	Zl	0,9427	1,4000
Tello 1 (Via	Z 2	2,2802	2,0588
Bosowa)	Z3	2,2802	2,5000
	A		
Penghantar	Zl	1,3452	1,6757
Tello 2	Z2	2,5222	2,5136
	Z3		
VI. GI Tello	Zl	0,7195	1,4000
Penghantar	Z2 ()	1,4774	2,0895
Pangkep 1	$Z3$ \times \times \triangle S	2,9028	3,5000
(Via Bosowa)		WAD AV	
Penghantar	Zl	1,3452	1,6757
Pangkep 2	Z2	3,3 <mark>7</mark> 63	
	Z 3	5,9384	

BAB V

PENUTUP

A. Kesimpulan

- 1. Keandalan relay impedansi atau relay jarak ini sangat baik untuk melindungi sistem yang ada karena perlindungan rele ini dibagi atas tiga tingkat/zone proteksi, yakni dari tingkat, zone proteksi I. dapat menjangkau 80-90% lokasi gangguan. Jaringan transmisi antar dua gardu induk. Pada tingkat/zone II dapat mendeteksi 20%-50% lokasi gangguan pada jaringan transmisi gardu induk berikutnya dan tingkat/zone 111 dapat menjangkau 50%-25% gangguan pada jaringan transmisi gardu induk berikutnya. Jadi kemungkinan akan kegagalan rele proteksi ini sangatlah kecil.
- 2. Berdasarkan evaluasi perbandingan antara setting perhitungan, dengan setting PT. PLN (Persero) G.I Bakaru G.I Tello, terdapat perbedaan-perbedaan diantara kedua hasil tersebut yang dapat dilihat pada tabel 4.5. Kondisi perbedaan ini disebabkan oleh tingkat kerja relay yang berbeda-beda pada tiap zone.

B. Saran-Saran

Sistem pengaman jaringan transmisi 150 KV dengan Relay Impedansi adalah sangat penting untuk di bahas pada bangku kuliah.

DAFTAR PUSTAKA

- Mason, C. Russel, 2005, The Art and Science Of Protective Relaying, John Wiley And Sons, inc., New York
- Warrington, A.R.C. Van, 1978, Vol. 2 and 3, Protective Relays, Chapman and Hall, London..
- Zuhal, 1988.Dasar Teknik Tenaga Listrik dan Elektronika Daya.Jakarta : PT. Gramedia.
- Ts. Mhd. Soeleman, 2013. Kumpulan Kuliah Mesin Serempak dan Tak Serempak. Elektronik ITB Bandung.
- A. Rida Ismu W. dan Soepratman, 2013. instalasi Cahaya dan Tenaga I. Departemen P & K Direktorat Pendidikan Menengah dan Kejuruan.
- Charles I.H. 2nd Edition.Preventive Maintenance of Electrical Equipment USA: Me Graw Hill Book, Inc.
- Eugene C. Lister, 2013. Mesin dan Rangkaian Listrik. Jakarta: Airlangga.

PAERPUSTAKAAN DAN PE

Robert W.S., 1987. Swithcgear and Control Hand Book.USA: Me Graw Hill Book, Inc.