PENERAPAN MEDIA VISUAL PADA PEMBELAJARAN FISIKA TERHADAP PENINGKATAN HASIL BELAJAR PESERTA DIDIK KELAS XI DI SMA NEGERI 5 JENEPONTO

SKRIPSI

Oleh: Wiwik NIM. 10539111913

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN PROGRAM STUDI PENDIDIKAN FISIKA JANUARI 2018

PENERAPAN MEDIA VISUAL PADA PEMBELAJARAN FISIKA TERHADAP PENINGKATAN HASIL BELAJAR PESERTA DIDIK KELAS XI DI SMA NEGERI 5 JENEPONTO

SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat Ujian guna Memperoleh Gelar Sarjana Pendidikan pada Program Studi Pendidikan Fisika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar

> Oleh: Wiwik NIM. 10539111913

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN PROGRAM STUDI PENDIDIKAN FISIKA JANUARI 2018

LEMBAR PENGESAHAN

Skripsi atas nama **WIWIK, NIM 10539111913** diterima dan disahkan oleh Panitia Ujian Skripsi berdasarkan Surat Keputusan Rektor Universitas Muhammadiyah Makassar Nomor: 009 Tahun 1439 H / 2018 M, pada Tanggal 06 Jumadil Awal 1439 H / 23 Januari 2018 M, sebagai salah satu syarat guna memperoleh gelar **Sarjana Pendidikan** pada Program Studi **Pendidikan Fisika**, Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar pada hari Sabtu, tanggal 27 Januari 2018.

Makassar 10 Jumadil Awal 1439 H 27 Januari 2018 M

PANITIA UJIAN

1. Pengawas Umum: Dr. H. Abd. Rahman Rahim, SE., MM

Ketua : Erwin Akib, M Pd., Ph.D

3. Sekretaris : Dr Khaeruddin, M.Pd

Penguji : 1. Dr. Ahmad Yani, M.Si

2 Nurlina, S.Si., M.Pd

3. Dr. Hj. Bunga Dara Amin, M.Ed

4. Dewi Hikmah Marisda, S.Pd., M.Pd

Disahkan Oleh, an FKIP Unismuh Makassar

Erwin Akib, M.Pd., Ph.D

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

PERSETUJUAN PEMBIMBING

Mahasiswa yang bersangkutan:

Nama

: WIWIK

NIM

: 10539111913

Program Studi: Pendidikan Fisika

Fakultas

: Keguruan dan Ilmu Pendidikan

Dengan Judul: Penerapan Media Visual pada Pembelajaran Fisika terhadap

Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA Negeri

5 Jeneponto.

Telah diperiksa dan diteliti ulang, maka skripsi ini telah memenuhi persyaratan

untuk diujikan.

Makassar

10 Jumadil Awal 1439 H 27 Januari 2018 M

Disetujui oleh:

Pembimbing

Amin, M.Ed

NIDN. 0008015708

embimbing II

A. Hj. Aisyah Azis, M.Pd

NIDN, 0027125503

Diketahui:

NIDN, 0901107602

Ketua Prodi Pendidikan Fisika

Nurlina, S.Si., M.Pd NIDN. 0923078201

SURAT PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama

: Wiwik

NIM

: 10539 1119 13

Jurusan

: Pendidikan Fisika

Judul Skripsi

: Penerapan Media Visual Pada Pembelajaran Fisika terhadap

Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA

Negeri 5 Jeneponto

Dengan ini menyatakan bahwa skripsi yang saya ajukan di depan tim penguji adalah asli hasil karya saya sendiri dan bukan hasil ciptaan orang lain atau dibuatkan oleh siapapun.

Demikian pernyataan ini saya buat dan saya bersedia menerima sanksi apabila pernyataan ini tidak benar.

Makassar, 27 Januari 2018

Yang Membuat Pernyataan

SURAT PERJANJIAN

Saya yang bertanda tangan di bawah ini:

Nama

Wiwik

NIM

10539 1119 13

Jurusan

Pendidikan Fisika

Fakultas

Keguruan dan Ilmu Pendidikan

Dengan ini menyatakan perjanjian sebagai berikut :

 Mulai dari penyusunan proposal sampai selesainya penyusunan skripsi ini, saya akan menyusun sendiri skripsi saya (tidak dibuatkan oleh siapapun).

- Dalam penyusunan skripsi, saya akan selalu melakukan konsultasi dengan pembimbing yang telah ditetapkan oleh pimpinan fakultas.
- 3. Saya tidak akan melakukan penjiplakan (plagiat) dalam menyusun skripsi ini.
- Apabila saya melanggar perjanjian seperti pada butir 1, 2, dan 3, saya bersedia menerima sanksi sesuai dengan aturan yang berlaku.

Demikian perjanjian ini saya buat dengan penuh kesadaran.

Makassar, 27 Januari 2018 Yang Membuat Perjanjian

Wiwik

MOTTO DAN PERSEMBAHAN

- * "Jangan mengeluhkan masalah, karena Allah mempunyai tujuan tuk perjuanganmu saat ini. Pelajarilah apa yang hendak Allah ajarkan. Jangan berhenti berupaya ketika menemui kegagalan. Karena kegagalan adalah cara Allah mengajari kita tentang arti kesungguhan".
- * "Dan bahwa manusia hanya memperoleh apa yang telah di usahakannya, dan sesungguhnya usahanya itu kelak akan diperlihatkan (kepadanya), kemudian akan diberi balasan kepadanya dengan balasan yang sempurna". (Q.S. An-Najm: 39-41)

Ya allah, seizinmu kuberhasil melewati satu rintangan untuk sebuah keberhasilan. Namun kutahu keberhasilan bukanlah akhir dari perjuanganku, tapi awal dari sebuah harapan dan cita-cita. Jalan didepanku masih panjang dalam menggapai masa depan yang cerah untuk membahagiakan orang-orang yang kucintai. Kupersembahkan karya ini sebagai tanda cinta dan terima kasih penulis kepada:

Teristimewa kedua orang tuaku tercinta,

Yang telah memberikan kasih sayang, segala dukungan, dan cinta kasih yang tiada terhingga yang tiada mungkin dapat kubalas hanya dengan selembar kertas yang bertuliskan kata cinta dan persembahan.

Keluarga besar penulis, yang tak henti-hentinya memberi dukungan, do'a, dan semangat selama penulis dalam menuntut ilmu.

ABSTRAK

Wiwik. 2018. Penerapan Media Visual pada Pembelajaran Fisika terhadap Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA Negeri 5 Jeneponto. Skripsi. Program Studi Pendidikan Fisika Fakultas Keguruan dan Ilmu Pendidikan. Universitas Muhammadiyah Makassar. Pembimbing I Bunga Dara Amin dan Pembimbing II Aisyah Azis.

Penelitian ini bertujuan untuk mengetahui (1) Seberapa besar hasil belajar fisika peserta didik kelas XI di SMAN 5 Jeneponto sebelum diterapkan media visual dalam pembelajaran (2) Seberapa besar hasil belajar fisika peserta didik SMAN 5 Jeneponto setelah diterapkan media visual dalam pembelajaran (3) Bagaimana peningkatan hasil belajar peserta didik sebelum dan setelah diterapkan media visual dalam pembelajaran pada kelas XI SMAN 5 Jeneponto. Penelitian ini merupakan penelitian pre eksperimen dengan menggunakan desain The One-Group Pretest-Posttest dengan melibatkan dua variabel terdiri dari variabel terikat dan vaiabel bebas. Variabel terikat yaitu hasil belajar fisika dan variabel bebas yaitu penerapan media visual. Instrumen penelitian yang digunakan adalah tes hasil belajar fisika sebanyak 32 item soal yang berbentuk pilihan ganda. Penelitian dilaksanakan di SMA Negeri 5 Jeneponto. Sampel dalam penelitian ini sebanyak 41 peserta didik. Hasil penelitian menunjukkan skor rata-rata hasil belajar peserta didik pada pretest sebesar 8,69. Sedangkan pada *posttest* diperoleh skor rata-rata sebesar 19,07. Dari perhitungan N-gain diperoleh sebesar 0,45 berada dalam kategori sedang. Dari hasil analisis dapat disimpulkan bahwa penerapan media visual dalam pembelajaran dapat meningkatkan hasil belajar fisika peserta didik kelas XI MIA.3 SMA Negeri 5 Jeneponto.

Kata kunci: Pre-Eksperimen, Media Visual, Hasil Belajar.

ABSTRACT

Wiwik. 2018. The Application of Visual Media on Physics Learning to Improve Learning Outcomes of Students of Class XI in Public SMA Negeri 5 Jeneponto. Thesis program of physics education majors physics faculty teacher and science education. University Muhammadiyah Makassar.

This research aims to determine (1) How big is the result of learning physics class XI SMAN 5 Jeneponto before applied learning in visual media (2) How big is the result of learning physics in class XI SMAN 5 Jeneponto after applied learning in visual media (3) How to increase the result studied physics student before and after applied visual media of learning in class XI SMAN 5 Jeneponto. This research is a pre-experimental design using The one group pretest-posttest involving two variables consisting of the dependent variable and independent variable. The dependent variable is the result of studying physics and a independent variable is the application visual media. The research instrument used is physics achievement test as many as 32 items in the form of multiple choise test. The research was condutected at SMA Negeri 5 Jeneponto. The study sample was 41 students. The result of research showed on pre test learners get the average score of the learning outcomes of 8,69. While the poss test obtained an average score of 19,07. Of N-Gain calculations obtained by 0,45 are in the medium category. From the analysic it can be concluded that the application of visual media in learning can improve physics learning outcomes of students class XI SMAN 5 Jeneponto.

Keywords: Pre-Experiment, Learning Visual Media, Learning Outcomes.

KATA PENGANTAR

بينه ألته الرجه الرجيز

Assalamu Alaikum Warahmatullahi Wabarakatuh

Allah maha penyayang dan pengasih, demikian kata untuk mewakili atas segala Karunia dan nikmat-Nya. Jiwa ini takkan henti bertahmid atas anugrah pada detik waktu, denyut jantung, gerak langkah, serta rasa rasio pada-Mu, sang khalik sehingga penulis dapat menyelesaikan skripsi yang berjudul "Penerapan Media Visual Pada Pembelajaran Fisika Terhadap Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA Negeri 5 Jeneponto".

Salam dan shalawat senantiasa tercurahkan kepada Nabiullah Muhammad SAW beserta keluarga, para sahabat, dan para pengikutnya yang senantiasa berada dalam lindungan Allah SWT. Setiap orang dalam berkarya selalu mencari kesempurnaan, tetapi terkadang kesempurnaan itu terasa jauh dari kehidupan seseorang. Kesempurnaan bagaikan fatamorgana yang semakin dikejar semakin menghilang dari pandangan, bagai pelangi yang terlihat indah dari kejauhan, tetapi menghilang jika didekati. Demikian juga tulisan ini, kehendak hati ingin mencapai kesempurnaan, tetapi kepastian penulis dalam keterbatasan. Segala daya dan upaya telah penulis kerahkan untuk membuat tulisan ini selesai dengan baik dan bermanfaat dalam dunia pendidikan, khususnya dalam ruang lingkup Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Makassar.

Motivasi dari berbagai pihak sangat membantu dalam perampungan tulisan ini. Segala rasa hormat, penulis mengucapkan terima kasih kepada kedua orang tua Ibunda Nurmiati, dan ayahanda Massalisi yang telah berjuang dengan gigih, berdoa, mengasuh, membesarkan, mendidik dengan penuh kasih sayang dan

membiayai penulis dalam pencarian ilmu. Serta penulis mengucapkan banyak terima kasih kepada para keluarga yang tak hentinya memberikan motivasi dan selalu menemaniku dengan candanya.

Demikian pula, penulis menyampaikan ucapan terima kasih dan penghargaan kepada Ibunda Dr. Hj. Bunga Dara Amin, M.Ed selaku pembimbing I dan Ibunda Dra. Hj. Aisyah Azis, M.Pd selaku pembimbing II yang selalu bersedia meluangkan waktunya dalam membimbing penulis, memberikan ide, arahan, saran dan bijaksana dalam menyikapi keterbatasan pengetahuan penulis, serta memberikan ilmu dan pengetahuan yang berharga baik dalam penelitian ini maupun selama menempuh kuliah.

Tidak lupa juga penulis mengucapkan terima kasih kepada; Bapak Dr. Abdul Rahman Rahim, MM., Rektor Universitas Muhammadiyah Makassar atas kebijakan-kebijakan yang telah diberikan, Bapak Erwin Akib, M.Pd., Ph.D., Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar, Ibu Nurlina, S.Si.,M.Pd. dan Bapak Ma'ruf, S.Pd.,M.Pd., Ketua dan Sekretaris Program Studi Pendidikan Fisika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar atas rekomendasi penyusunan skripsi ini, Bapak Dr. Abdul Haris, M.Si dan Dr. Muh. Tawil, M.Si, sebagai validator yang telah meluangkan waktunya untuk memeriksa dan memberikan saran terhadap perbaikan instrumen penelitian, Bapak dan Ibu Dosen Program Studi Pendidikan Fisika FKIP Universitas Muhammadiyah Makassar yang telah mendidik dan membekali penulis dengan ilmu pengetahuan selama di bangku perkuliahan.

Ucapan terima kasih yang sebesar-besarnya juga penulis ucapkan kepada Ibu Dra. Hj. Harigowa Bahar Kepala Sekolah SMA Negeri 5 Jeneponto dan Ibu Nurmiati, S.Pd. selaku guru mata pelajaran fisika yang telah memberikan kesempatan dan bantuan untuk melaksanakan penelitian serta segenap peserta didik Kelas XI MIA.3 SMA Negeri 5 Jeneponto atas segala bantuan dan kerjasamanya yang baik selama penulis melaksanakan penelitian. Terima kasih buat saudara-saudari saya (Iman, Nurhidayat, S.Pd, Rostina, SP, Indra Setiawan) yang selama ini selalu menyemangati dan mendengar keluh kesah penulis. Penulis juga mengucapkan terima kasih kepada rekan-rekan mahasiswa Program Studi Pendidikan Fisika Angkatan 2013 khususnya anak kelas A atas segala bantuan dan kerjasamanya selama penulis menjalani perkuliahan. Spesial for sahabatsahabat saya (A. Hikma Wardani, Nurcahyana Pattahuddin, Fifi Angrasari, Nurasmi, dan Hardianti) terima kasih atas segala kebersamaan, motivasi, saran, bantuan dan persahabatan yang manis ini. Kebersamaan kita telah memberikan banyak pembelajaran buat penulis. Penulis juga berterima kasih kepada temanteman P2K atas doa dan semangatnya untuk terus mengerjakan skripsi, penulis akhirnya mampu menyelesaikan penelitian ini. Penulis juga berterima kasih kepada teman-teman Asrama Pondok Harapan Indah atas bantuannya selama ini. Serta semua pihak yang tidak bisa disebutkan, terima kasih atas segala bantuan, doa dan dukungannya selama penulisan skripsi ini.

Demikian tulisan ini dapat diselesaikan. Penulis menyadari bahwa penelitian ini masih jauh dari sempurna. Oleh sebab itu, peneliti mengharapkan kritik dan saran yang dapat membangun serta menyempurnakan tulisan ini. Akhir kata penulis ucapkan banyak terima kasih kepada semua pihak yang telah membantu dalam penyusunan skripsi ini sehingga apa yang telah dihasilkan dapat bermanfaat dan berguna bagi kita semua.

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	ii
PERSETUJUAN PEMBIMBING	iii
SURAT PERNYATAAN	iv
SURAT PERJANJIAN	v
MOTTO DAN PERSEMBAHAN	vi
ABSTRAK	vii
ABSTRACK	viii
KATA PENGANTAR	ix
DAFTAR ISI	xiii
DAFTAR TABEL	XV
DAFTAR GAMBAR	xvi
DAFTAR LAMPIRAN	xvii
BAB I PENDAHULUAN	1
A. Latar Belakang	1
B. Rumusan Masalah	5
C. Tujuan Penelitian	5
D. Manfaat penelitian	6
BAB II KAJIAN PUSTAKA DAN KERANGKA PIKIR	7
A. KAJIAN PUSTAKA	7
Hakikat Belajar	7
2. Hasil Belajar	10
3. Media Pembelajaran	15
B. KERANGKA PIKIR	21
BAB III METODE PENELITIAN	23
A. Jenis Penelitian	23
B. Lokasi Penelitian	23
C. Variabel penelitian	24
D. Populasi dan sampel	24
E. Defenisi Operasional Variabel	24

F. Instrumen Penelitian	25
G. Teknik Pengumpulan Data	27
H. Teknik Analisis Data	28
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	31
A. Hasil Penelitian	31
B. Pembahasan	42
BAB V PENUTUP	45
A. Kesimpulan	45
B. Saran	45
DAFTAR PUSTAKA	47
BIODATA	

DAFTAR TABEL

Tabel 3.1 Kategori Skor Hasil Belajar Peserta Didik
Tabel 3.2 Adaptasi kategori skor hasil belajar peserta didik
Tabel 3.3 Kriteria Indeks Gain
Tabel 4.1 Skor Peserta Kelas XI MIA.3 SMA Negeri 5 Jeneponto Pada Saat
<i>Pre Tes</i>
Tabel 4.2 Distribusi Frekuensi Hasil Pre Tes Peserta Didik Kelas XI MIA.3
SMA Negeri 5 Jeneponto
Tabel 4.3 Skor Peserta Kelas XI MIA.3 SMA Negeri 5 Jeneponto Pada Saat
Poss Tes
Tabel 4.4 Distribusi Frekuensi Hasil Pre Tes Peserta Didik Kelas XI MIA.3
SMA Negeri 5 Jeneponto
Tabel 4.5 Kategori Skor Hasil Belajar Peserta Didik XI MIA.3 SMA Negeri 5
Jeneponto Saat Pre Tes dan Poss Tes
Tabel 4.6 Rekapitulasi Hasil Belajar Pre Tes dan Poss Tes
Tabel 4.7 Ketuntasan Hasil Belajar Peserta Didik Kelas XI MIA. ₃ SMA Negeri 5
Jeneponto
Tabel 4.8 Distribusi Frekuensi dan Presentase Hasil Belajar Belajar Peserta
Didik Kelas XI MIA.3 SMA Negeri 5 Jeneponto

DAFTAR GAMBAR

Gambar 2.1 Kerangka Fikir	. 22
Gambar 4.1 Grafik Presentase Distribusi Frekuensi Skor Hasil Belajar Fisika	
Kelas XI MIA.3 SMA Negeri 5 Jeneponto pada Pre Tes	. 34
gambar 4.2 Grafik Presentase Distribusi Frekuensi Skor Hasil Elajar Fisika	
Kelas XI MIA.3 SMA Negeri 5 Jeneponto pada Poss Tes	. 36
Gambar 4.3 Kategori Skor Hasil Belajar Peserta Didik Kelas XI MIA.3 SMA	
Negeri 5 Jeneponto Saat Pre Tes dan Poss Tes	. 38
Gambar 4.4 Presentase Ketuntasan Hasil Belajar Peserta Didik	. 40

DAFTAR LAMPIRAN

LAMPIRAN	49
LAMPIRAN A	50
A.1 Rencana Pelaksanaan Pembelajaran (RPP)	51
A.2 Bahan ajar peserta didik	128
A.3 Lembar Kegiatan Peserta didik (LKPD)	157
LAMPIRAN B	183
B.1 Kisi-kisi Instrumen Penelitian	
B.2 Instrumen Uji Penelitian	212
B.3 Kisi-Kisi Soal Valid	224
B.3 Soal Pre Tes	237
B.4 Soal Poss Tes	244
LAMPIRAN C	250
C.1 Validasi Item Soal	251
C.2 Analisis Validasi Item Soal	256
LAMPIRAN D	259
D.1 Analisis Deskriptif	260
D.2 Analisis Inferensial	268
LAMPIRAN E	270
E.1 Daftar Hadir Peserta Didik	271
E.2 Documentasi	273
E.3 Slide Media Pembelajaran Fisika	275
LAMPIRAN F	278
Persuratan	276

BABI

PENDAHULUAN

A. Latar Belakang

Fisika merupakan salah satu cabang Ilmu Pengetahuan Alam yang mempelajari fenomena-fenomena alam yang terjadi, dan merupakan ilmu pengetahuan yang sangat mendasar dari berbagai ilmu pengetahuan lainnya. Sebagai cabang ilmu, fisika merupakan salah satu mata pelajaran di sekolah menengah atas yang diperlukan dalam pendidikan. Oleh sebab itu, pengajaran fisika perlu ditingkatkan, dikarenakan saat ini masih banyak peserta didik yang beranggapan bahwa fisika adalah mata pelajaran yang sukar dipahami, membosankan dan penuh dengan sederetan rumus yang harus dihafal. Dilihat dari hal tersebut, maka seorang guru perlu mengusahakan agar pelajaran yang diajarkan kelihatan menarik dan tidak kelihatan membosankan.

Tujuan dalam pengajaran fisika adalah mengantarkan peserta didik menguasai konsep-konsep fisika dan keterkaitannya untuk memecahkan masalah-masalah dalam kehidupan sehari-hari. Sehingga peserta didik tidak sekedar tahu dan hafal tentang konsep fisika, melainkan harus menjadikan peserta didik mengerti dan memahami konsep tersebut dan menghubungkan keterkaitan suatu konsep dengan konsep lain.

Salah satu alasan kenapa materi pelajaran fisika sulit untuk dipahami dan kurang menyenangkan dikarenakan guru kurang kreatif dan inovatif dalam menggunakan metode pembelajaran yang dapat memperjelas materi dalam proses pembelajaran. Guru menyajikan pelajaran hanya dengan berdasarkan buku teks saja dan tidak menggunakan media atau metode pembelajaran tertentu. Kondisi demikian tentu memerlukan adanya upaya strategi agar dapat memberikan dampak positif terhadap perubahan hasil belajar fisika yang lebih baik dan peserta didik dapat secara aktif terlibat dalam setiap proses pembelajaran.

Rendahnya hasil belajar merupakan masalah dalam proses pembelajaran fisika. Berdasarkan hasil wawancara dengan guru mata pelajaran Fisika Kelas XI SMA Negeri 5 Jeneponto, beliau mengungkapkan bahwa dari nilai Ketuntasan Belajar Minimal (KBM) yang ditetapkan yaitu 75, masih banyak peserta didik memperoleh nilai masih di bawah nilai standar yang ditetapkan, sehingga dapat dikatakan pencapaian hasil belajar peserta didik masih tergolong rendah. Rendahnya hasil belajar disebabkan karena peserta didik kurang memperhatikan saat guru menerangkan materi pembelajaran, kurangnya minat, dan kurang siapnya peserta didik dalam menerima pelajaran sehingga membuat keadaan peserta didik di dalam kelas itu fakum yang pada akhirnya hasil belajar ikut berpengaruh.

Selain itu hal yang menyebabkan rendahnya hasil belajar peserta didik yaitu, kurang memaksimalkan penggunaan media dalam pembelajaran. Padahal pada masa sekarang ini penggunaan media dalam pembelajaran bukan hal yang baru lagi, tetapi sudah menjadi bagian yang tidak terpisahkan dari pembelajaran. Salah satu manfaat media dalam pembelajaran adalah sebagai alat bantu agar pembelajaran lebih menarik minat dan perhatian peserta didik, serta mempermudah penyampaian materi yang diajarkan. Apalagi dalam

pembelajaran fisika, penyampaian materi ajar akan lebih efektif bila dipadukan dengan media atau alat peraga.

Media sebagai salah satu komponen dalam kegiatan belajar mengajar dan sumber belajar yang digunakan dalam pembelajaran, hendaknya digunakan dan dipilih atas dasar tujuan dan bahan pelajaran yang ditetapkan. Namun, dilihat pada kenyataan sekarang ini, masih banyak guru yang belum menggunakan media pembelajaran, padahal dengan menggunakan media peserta didik akan lebih mudah menerima dan memahami pelajaran yang disampaikan oleh guru. Maka dari itu guru sebagai subjek pembelajaran harus dapat memilih media dan sumber belajar yang tepat, agar pembelajaran kelihatan menarik dan menyenangkan.

Mengingat, menghafal, dan memahami konsep-konsep fisika yang tidak bisa diamati secara langsung tidaklah mudah. Oleh karena itu, untuk menjelaskan konsep-konsep tersebut, maka diperlukan suatu media yang dirancang sedemikian rupa. Salah satu media yang dapat digunakan untuk mengatasi permasalahan tersebut adalah menerapkan media visual dalam pembelajaran. Penerapan media ini diharapkan dapat meningkatkan hasil belajar fisika peserta didik, karena melalui media ini peserta didik akan lebih mudah untuk memahami konsep-konsep fisika, mereka tidak merasa bosan dalam mengikuti pelajaran dan akan lebih mudah mengingat materi yang telah diajarkan, serta peserta didik tidak lagi hanya bisa membayangkan fenomena-fenomena yang dipelajari.

Beberapa hasil penelitian telah dilakukan terkait dengan media pembelajaran visual salah satunya dalam skripsi pendidikan fisika oleh (Widyasari: 2011) menunjukan bahwa pemberian media peraga visual dalam pembelajaran fisika menggunakan pendekatan CTL efektif pada materi besaran dan satuan pada siswa SMA Negeri 2 Wonosobo, penelitian oleh (Rufaida,S: 2011) juga menunjukan bahwa setelah diajar denga strategi Mastery Learning dengan menggunakan media visual hasil belajar fisika siswa kelas VIII SMP Negeri 30 Makassar berada pada kategori baik. Kemudian penelitian yang dilakukan oleh (Wahyuni, Z: 2012) hasil penelitiannya menunjukan bahwa pembelajaran dengan Model Learning 31 Cycle Tipe 5E dengan Media Visual Terdapat Peningkatan pada Hasil Belajar Fisika pada Siswa Kelas X_C SMA Negeri 2 Dolo

Salah satu manfaat media visual dalam pembelajaran fisika adalah guru tidak lagi kesulitan menunjukan apa yang dimaksud dan hendak disampaikan. Namun, melihat kenyataan bahwa penggunaan media ini belum atau kurang dimanfaatkan dalam proses belajar mengajar, maka perlu kiranya diadakan penelitian untuk mengetahui lebih lanjut tentang penggunaan media visual di bidang fisika. Melalui pembelajaran fisika, implementasi media visual dalam pembelajaran akan menciptakan suasana belajar yang menyenangkan sehingga membantu peserta didik mudah memahami materi diajarkan. Berdasarkan pernyataan tersebut, maka peneliti tertarik untuk melakukan penelitian mengenai "Penerapan Media Visual Pada

Pembelajaran Fisika Terhadap Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA Negeri 5 Jeneponto".

B. Rumusan Masalah

Berdasarkan latar belakang yang telah dikemukakan, maka yang menjadi rumusan masalah dalam penelitian ini adalah:

- Seberapa besar hasil belajar peserta didik kelas XI SMA Negeri 5
 Jeneponto sebelum diterapkan media visual pada pembelajaran fisika tahun ajaran 2017/2018?
- 2. Seberapa besar hasil belajar peserta didik kelas XI SMA Negeri 5 Jeneponto setelah diterapkan media visual pada pembelajaran fisika tahun ajaran 2017/2018?
- 3. Bagaimana peningkatan hasil belajar peserta didik kelas XI SMA Negeri 5 Jeneponto sebelum dan setelah diterapkan media visual pada pembelajaran fisika tahun ajaran 2017/2018?

C. Tujuan Penelitian

Berdasakan rumusan masalah yang telah diungkapkan, maka yang menjadi tujuan penelitian adalah:

- Untuk mengetahui seberapa besar hasil belajar peserta didik XI SMA Negeri 5 Jeneponto sebelum diterapkan media visual pada pembelajaran fisika tahun ajaran 2017/2018
- Untuk mengetahui seberapa besar hasil belajar peserta didik XI SMA Negeri 5 Jeneponto setelah diterapkan media visual pada pembelajaran fisika tahun ajaran 2017/2018

Untuk mengetahui bagaimana peningkatan hasil belajar peserta didik kelas
 XI SMA Negeri 5 Jeneponto sebelum dan setelah diterapkan media visual
 pada pembelajaran fisika tahun ajaran 2017/2018

D. Manfaat Penelitian

Hasil penelitian semoga dapat memberikan manfaat dalam pembelajaran fisika yang dilakukan;

- Bagi Sekolah, penelitian ini dapat memberikan masukan yang relevan untuk dapat meningkatkan mutu pembelajaran peserta didik sehingga menghasilkan output lulusan yang bermutu
- 2. Bagi guru, sehingga guru dapat menyampaikan materi secara optimal dengan menggunakan media, guru dapat menciptakan suasana belajar yang efektif dan menyesuaikan dengan tingkat kebutuhan para peserta didik
- Bagi peserta didik, sebagai koreksi bagi peserta didik untuk lebih giat belajar supaya hasil yang dicapai dapat optimal, serta dapat meningkatkan motivasi dan semangat belajar peserta didik.
- 4. Bagi peneliti lebih lanjut, dapat dijadikan referensi dalam mengembangkan penggunaan media visual dalam pembelajaran khususnya dalam pembelajaran fisika.

BAB II

KAJIAN PUSTAKA DAN KERANGKA PIKIR

A. KAJIAN PUSTAKA

1. Hakikat Belajar

Belajar adalah suatu proses yang kompleks yang terjadi pada semua orang dan berlangsung seumur hidup, sejak dia masih bayi hingga ke liang lahat nanti. Salah satu pertanda bahwa seseorang telah belajar adalah adanya perubahan tingkah laku dalam dirinya. Perubahan tingkah laku tersebut menyangkut baik perubahan yang bersifat pengetahuan (kognitif) dan keterampilan (psikomotorik) maupun yang menyangkut nilai dan sikap (afektif). Disamping itu, ada pula sebagian orang yang memandang belajar sebagai pelatihan belaka seperti yang tampak pada pelatihan membaca dan menulis. Berdasarkan persepsi semacam ini, biasanya mereka akan merasa cukup puas bila anak-anak mereka telah mampu memperlihatkan keterampilan jasmaniah tertentu walaupun tanpa pengetahuan mengenai arti, hakikat, dan tujuan keterampilan tersebut.

Belajar menurut James O. Wittaker, adalah sebagai proses dimana tingkah laku ditimbulkan atau diubah melalui latihan atau pengalaman. Sedangkan menurut Slameto, belajar adalah suatu proses usaha yang dilakukan individu untuk memperoleh suatu perubahan tingkah laku yang baru secara keseluruhan, secara tidak langsung apa yang kita lakukan dalam kehidupan sehari-hari merupakan satu bagian dari sebuah proses belajar, apa yang kita lakukan dengan baik akan merubah tingkah kita menjadi lebih baik.

Kemudian, menurut B.F Skinner bahwa belajar adalah suatu proses adaptasi atau penyesuain tingkah laku yang berlangsung secara progressif. Sedangkan menurut Gagne, belajar adalah kegiatan yang kompleks, dan hasil Belajar berupa kapabilitas. Setelah belajar orang memiliki keterampilan, pengetahuan, sikap dan nilai. Timbulnya kapatilas tersebut disebabkan: (1) stimulasi yang berasal dari lingkungan dan, (2) proses kognitif yang dilakukan pelajar. Dengan demikian, belajar adalah seperangkat proses kognitif yang merubah sifat stimulasi lingkungan, melewati pengolahan informasi, menjadi kapitalis baru. Selanjutnya belajar menurut Jerome S. Bruner, merupakan cara bagaimana orang memilih, mempertahankan, dan mentransformasi informasi secara efektif. (Syaiful. 2014:11-34)

Selain itu, Hintzman juga mengemukan bahwa belajar adalah suatu perubahan yang terjadi dalam diri organisme (manusia atau hewan) disebabkan oleh pengalaman yang dapat memengaruhi tingkah laku organisme tersebut. Jadi, dalam pandangan Hintzman, perubahan yang ditimbulkan oleh pengalaman tersebut baru dapat dikatakan belajar apabila mempengaruhi organism. Sedangkan belajar menurut Wittig adalah perubahan yang relatife menetap yang terjadi dalam segala macam/keseluruhan tingkah laku suatu organisme sebagai hasil pengalaman. (Muhibbin. 2016: 88-89)

Sehubungan dengan uraian di atas, Hamdani (2011: 23) juga mengemukan bahwa, belajar merupakan perubahan tingkah laku atau penampilan, dengan serangkaian kegiatan. Misalnya, dengan membaca, mengamati, mendengar, meniru, dan sebagai. Selain itu, belajar akan lebih

baik subjek belajar mengalami atau melakukannya. Jadi, tidak bersifat verbalistik. Belajar sebagai kegiatan individu sebenarnya merupakan rangsangan-rangsangan individu yang dikirim kepadanya oleh lingkungan. Kemudian menurut Purwanto bahwa belajar merupakan proses dalam diri individu berinteraksi dengan lingkungan untuk mendapatkan perubahan dalam perilakunya. Sedangkan dalam pandangan behavioristik, belajar merupakan sebuah perilaku membuat hubungan antara stimulus dan respon, kemudian memperkuatnya. Belajar dilakukan untuk mengusahakan adanya perubahan perilaku pada individu yang belajar. Perubahan perilaku itu merupakan perolehan menjadi hasil belajar. Namun, menurut paham yang konstruktivistik, belajar merupakan hasil konstruksi sendiri (pebelajar) sebagai hasil interaksinya terhadap lingkungan belajar

Berdasarkan dari beberapa pendapat para ahli tentang pengertian belajar, maka dapat disimpulkan bahwa belajar adalah suatu proses dimana terjadinya perubahan tingkah laku yang diperoleh dari suatu pengalaman. Belajar itu tidak hanya sekedar pengalaman namun belajar adalah proses bukan suatu hasil, karena belajar itu berlangsung secara aktif dan integrative dengan menggunakan berbagai bentuk perbuatan untuk mencapai suatu tujuan. Dengan demikian, perubahan tingkah laku pada diri individu merupakan hasil dari suatu proses belajar.

2. Hasil Belajar

a. Pengertian Hasil Belajar

Untuk dapat melakukan evaluasi hasil belajar maka diadakan pengukuran terhadap hasil belajar. Pengukuran adalah kegiatan membandingkan sesuatu dengan alat ukurnya. Dalam pendidikan, pengukuran hasil belajar dilakukan dengan mengadakan *test-ing* untuk membandingkan kemampuan peserta didik yang diukur dengan tes sebagai alat ukurnya. Hasil belajar merupakan perubahan perilaku peserta didik akibat belajar. Perubahan itu diupayakan dalam proses belajar mengajar untuk mencapai tujuan pendidikan. Perubahan perilaku individu akibat proses belajar mengajar untuk mencapai tujuan pendidikan. Perubahan perilaku individu akibat proses belajar memengaruhi perubahan perilaku pada domain tertentu pada diri peserta didik, tergantung perubahan yang diinginkan terjadi sesuai dengan tujuan pendidikan.

Hasil belajar adalah perubahan yang mengakibatkan manusia berubah dalam sikap dan tingkah lakunya (Winkel, 1996:51). Aspek perubahan itu mengacu kepada taksonomi tujuan pengajaran yang dikembangkan oleh Bloom, Simpson dan Harrow mencakup aspek kognitif, afektif dan psikomorik. Sedangkan menurut Gagne, Hasil belajar adalah terbentuknya konsep, yaitu kategori yang kita berikan pada stimulus yang ada di lingkungan, yang menyediakan skema yang terorganisasi untuk mengasimilasi stimulus-stimulus baru dan menentukan

hubungan di dalam dan di antara kategori-kategori. (Purwanto, 2016: 34-45)

Hasil belajar merupakan hal yang dapat dipandang dari dua sisi, yaitu sisi peserta didik dan dari sisi guru. Dari sisi peserta didik, hasil belajar merupakan tingkat perkembangan mental yang lebih baik bila dibandingkan pada saat sebelum belajar. Tingkat perkembangan mental tersebut terwujud pada jenis-jenis ranah kognitif, afektif, dan psikomotorik. Sedangkan dari sisi guru, hasil belajar merupakan saat terselesaikannya bahan pelajaran. Hasil juga bisa diartikan adalah bila seseorang telah belajar akan terjadi perubahan tingkah laku pada orang tersebut, misalnya dari tidak tahu menjadi tahu dan dari tidak mengerti menjadi mengerti. Hasil belajar merupakan suatu puncak proses belajar. Hasil belajar tersebut terjadi terutama berkat penilaian guru. Hasil belajar dapat berupa dampak pengajaran dan dampak pengiring. Kedua dampak tersebut bermanfaat bagi guru dan peserta didik.

Menurut Woodworth dalam (Ismihyani, 2000), hasil belajar merupakan perubahan perilaku sebagai akibat dari proses belajar. Woordworth juga mengatakan bahwa hasil belajar adalah kemampuan actual yang diukur secara langsung. Hasil belajar peserta didik merupakan suatu keberhasilan peserta didik yang diperoleh dari hasil belajarnya. Untuk mengetahui berhasil tidaknya seorang peserta didik maka akan dilakukan dilakukan pengukuran/evaluasi ataupun penilaian. Penilaian proses belajar adalah upaya memberi nilai terhadap kegiatan belajar-

mengajar yang dilakukan oleh peserta didik dan guru dalam mencapai tujuan-tujuan pengajaran. Dalam penilaian ini dilihat sejauh mana keefektifan dan efesiennya dalam mencapai tujuan pengajaran atau perubahan tingkah laku peserta didik. Oleh sebab itu, penilaian hasil dan proses belajar saling berkaitan satu sama lain sebab hasil merupakan akibat dari proses. (Abdul Majid, 2015: 28)

Menurut Suprijono, dalam (Thobroni, 2015), hasil belajar adalah pola-pola perbuatan, nilai-nilai, pengertian-pengertian, sikap-sikap, apresiasi, dan keterampilan. Merujuk pemikiran Gagne, hasil belajar berupa hal-hal berikut:

- Informasi verbal, kapabilitas mengengungkapkan pengetahuan dalam bentuk bahasa, bail lisan maupun tertulis.
- 2. Keterampilan Intelektual, yaitu kemampuan mempresentasikan konsep dan lambing.
- Strategi kognitif, yaitu kecakapan menyalurkan dan mengarahkan akivitas kognitifnya.
- 4. Keterampilan motorik, yaitu kemampuan melakukan serangkaian gerak jasmani dalam urusan dan koordinasi sehingga terwujud otomatisme gerak jasmani.
- 5. Sikap adalah kemampuan menerima atau menolak objek berdasarkan penilaian terhadap objek tersebut. (Thobroni, 2015:20-21)

Dalam sistem pendidikan nasional rumusan tujuan pendidikan, baik tujuan kurikuler maupun tujuan instruksional, menggunakan klasifikasi hasil belajar dari Benyamin Bloom yang secara garis besar membaginya menjadi 3 ranah, yaitu ranah kognitif, ranah afektif, dan ranah psikomotorik. (Sudjana, 2017:22-23)

a) Ranah Kognitif

Hasil belajar kognitif adalah perubahan perilaku yang terjadi dalam kawasan kognisi. Proses belajar yang melibatkan kognisi meliputi kegiatan sejak dari penerimaan stimulus eksternal oleh sensori, penyimpanan dan pengolahan dalam otak menjadi informasi hingga pemanggilan kembali informasi ketika diperlukan untuk menyelesaikan masalah.

Ranah kognitif berkenaan dengan dengan hasil belajar intelektual yang terdiri dari enam aspek, yakni hafalan (C_1) , pemahaman (C_2) , aplikasi (C_3) , analisis (C_4) , sintesis (C_5) , dan evaluasi (C_6) .

Kemampuan menghafal (*knowledge*) merupakan kemampuan kognitif yang paling rendah. Kemampuan ini merupakan kemampuan memanggil kembali fakta yang disimpan dalam otak digunakan untuik merespons suatu masalah. Kemampuan pemahaman (*comprehension*) adalah kemampuan untuk melihat hubungan fakta dengan fakta. Menghafal fakta tidak lagi cukup Karena pemahaman menuntut pengetahuan akan fakta dan hubungannya. Kemampuan penerapan (*application*) adalah kemampuan kognitif untuk memahami aturan, hukum, rumus dan sebagainya dan menggunakan untuk memecahkan masalah. Kemampuan analisis (*analysis*) adalah kemampuan

memahami sesuatu dengan menguraikannya ke dalam unsure-unsur. Kemampuan sintesi (*synthesis*) adalah kemampuan memahami dengan mengorganisasikan bagian-bagian ke dalam kesatuan. Kemampuan evaluasi (*evaluation*) adalah kemampuan membuat penilaian dan mengambil keputusan dari hasil penilaiannya.

b) Ranah afektif

Krathwohl membagi hasil belajar afektif menjadi lima tingkat yaitu penerimaan, partisipasi, penilaian, organisasi dan internalisasi. Hasil belajar disusun secara hirarkis mulai dari tingkat yang paling rendah dan sederhana hingga yang palin tinggi dan kompleks.

Penerimaan (receiving) adalah kesediaaan menerima rangsangan yang dating kepadanya. Partisipasi (responding) adalah kesediaan memberikan respons dengan berpartisipasi. Penilaian (valuing) adalah kesediaan untuk menentukan pilihan sebuah nilai dari rangsangan tersebut. Organisasi adalah kesediaan mengorganisasikan nilai-nilai yang dipilihnya untuk menjadi pedoman yang mantap dalam perilaku. Internalisasi (characterization) adalah menjadikan nilai-nilai yang diorganisasikan untuk tidak hanya menjadi pedoman perilaku tetapi juga menjadi bagian dari pribadi dalam perilaku sehari-hari.

c) Ranah psikomotorik

Ranah psikomotori berkenaan dengan hasil belajar keterampilan dan kemampuan bertindak. Ada 6 aspek ranah psikomotorik, yakni gerakan refleks, keterampilan gerakan dasar, kemampuan perseptual, kemampuan fisis, gerakan keterampilan, dan komunikasi tanpa kata. (Purwanto. 2016: 51-52).

Sehingga dari beberapa pendapat di atas dapat disimpulkan bahwa hasil belajar merupakan suatu perubahan perilaku yang diperoleh peserta didik dalam proses pembelajaran dengan mengacu pada tiga ranah yaitu ranah kognitif, afektif, dan psikomotorik. Dalam proses pembelajaran setiap guru ingin mengetahui hasil yang dicapai peserta didiknya selama mengikuti proses pembelajaran. Untuk mengetahui tingkat keberhasilan peserta didik digunakan alat ukur yaitu tes.

b. Faktor-Faktor yang Mempengaruhi Hasil Belajar

Ada dua faktor yang mempengaruhi hasil belajar yaitu:

Faktor Internal adalah faktor yang timbul dari dalam diri individu itu sendiri, adapun yang dapat digolongkan ke dalam faktor intern yaitu kecerdasan/intelegensi, bakat, minat, dan motivasi. Sedangkan Faktor eksternal yakni keadaan keluarga dan keadaan sekolah.

3. Media Pembelajaran

a. Pengertian Media Pembelajaran

Media merupakan salah satu komponen komunikasi, yaitu sebagai pembawa pesan dari komunikator menuju komunikan. Kata media berasal dari bahasa latin yang adalah bentuk jamak dari medium batasan mengenai pengertian media sangat luas, namun kita membatasi pada media

pendidikan saja yakni media yang digunakan sebagai alat dan bahan kegiatan pembelajaran. (Daryanto, 2013:4).

Menurut Heinich (Rusman, 2017:213), media merupakan alat saluran komunikasi. Media berasal dari bahasa Latin dan merupakan bentuk jamak dari kata "medium" yang secara harfiah berarti "perantara", yaitu perantara sumber pesan (a source) dengan penerima pesan (a receiver). Sedangkan menurut (Arsyad, 2011:3) media apabila dipahami secara garis besar adalah manusia materi atau kejadian yang membangun kondisi yang membuat peserta mampu memperoleh pengetahuan, keterampilan, atau sikap. Dalam pengertian ini, guru, buku teks, dan lingkungan sekolah merupakan media. Secara lebih khusus, pengertian media dalam proses belajar mengajar cenderung di artikan sebagai alatalat grafis, photografis, atau elektronik untuk menangkap, memproses, dan menyusun kembali informasi visual atau verbal.

Disisi lain dikemukakan bahwa, media adalah pengantar pesan dari pengirim ke penerima pesan, dengan demikian media merupakan wahana penyalur informasi belajar atau penyalur pesan. Media salah satu alat komunikasi dalam menyampaikan pesan tentunya sangat bermanfaat jika di implementasikan ke dalam proses pembelajaran, media yang digunakan dalam proses pembelajaran tersebut disebut sebagai media pembelajaran. Media pembelajaran merupakan suatu teknologi pembawa pesan yang dapat dapat diguanakan untuk keperluan pembelajaran.

Pada awal sejarah pembelajaran, media hanya sebagai alat bantu yang digunakan oleh guru untuk menyampaikan pelajaran. Berbeda dengan saat ini, kehadiran media pembelajaran juga dapat memberikan dorongan, stimulus, pengembangan aspek intelektual, maupun emosional siswa. Hakikatnya media pembelajaran sebagai wahana untuk menyampaikan pesan atau informasi dari sumber pesan diteruskan pada penerima. Pesan atau bahan ajar yang disampaikan adalah materi pembelajaran untuk mencapai tujuan pembelajaran atau sejumlah komptetensi yang telah dirumuskan, sehingga dalam prosesnya memerlukan media sebagai subsistem pembelajaran.

Jadi dari beberapa pendapat di atas dapat disimpulkan bahwa media pembelajaran adalah segala sesuatu yang digunakan dalam pembelajaran sebagai pengantar pesan dari pengirim ke penerima pesan.

b. Fungsi Media Pembelajaran

Dalam proses pembelajaran, media memiliki fungsi sebagai pembawa informasi dari sumber (guru) menuju penerima (siswa). Sering kali terjadi banyaknya siswa yang tidak atau kurang memahami materi pelajaran yang disampaikan guru atau pembentukan kompetensi yang diberikan pada siswa dikarenakan ketiadaan atau kurang optimalnya pemberdayaan media pembelajaran dalam proses belajar mengajar. Kelebihan kemampuan media diantaranya adalah kemampuan *fiksatif*, artinya dapat menangkap, menyimpan, dan menampilkan kembali suatu objek atau kejadian. Kedua, kemampuan *manipulatif*, artinya media dapat

menampilkan kembali objek atau kejadian dengan berbagai macam perubahan (manipulasi) sesuai keperluan. Ketiga, kemampaun *distributif*, artinya media mampu menjangkau audien yang besar jumlahnya dalam satu kali penyajian secara serempak. Secara rinci, fungsi media dalam pembelajaran adalah sebagai berikut:

- 1. Sebagai alat bantu dalam proses pembelajaran
- 2. Sebagai pengarah dalam pembelajaran
- 3. Sebagai permainan atau membangkitkan perhatian dan motivasi siswa
- 4. Meningkatkan hasil dan proses pembelajaran
- 5. Mengurangi terjadinya verbalisme
- 6. Mengatasi keterbatasan ruang, waktu, tenaga, dan daya indra Selain itu, kontribusi media pada pembelajaran menurut Kemp and Dayton adalah sebagai berikut:
- 1. Penyampaian pesan pembelajaran dapat lebih terstandar
- 2. Pembelajaran dapat lebih menarik
- 3. Pembelajaran menjadi interaktif dengan menerapkan teori belajar
- 4. Waktu pelaksanaan pembelajaran dapat diperpendek
- 5. Kualitas pembelajaran dapat ditingkatkan
- 6. Proses pembelajaran dapat berlangsung, kapanpun, dan dimanapun diperlukan
- 7. Sikap positif peserta didik terhadap materi pembelajaran serta proses pmbelajaran dapat ditingkatkan
- 8. Peran guru berubahan kearah positif

c. Media Visual

Media visual adalah media yang memberikan gambaran menyeluruh dari yang konkrit sampai dengan abstrak. Jadi dapat diambil kesimpulan bahwa media visual merupakan salah satu media untuk pembelajaran. Media bersifat relalistis dan dapat dirasakan oleh sebagian besar panca indra kita terutama oleh indera penglihatan.

Sedangkan menurut Hamdani (2011: 249), media visual adalah media yang hanya dapat dilihat dengan menggunakan indra penglihatan. Jenis media inilah yang sering digunakan oleh para guru untuk membantu menyampaikan isi atau materi pelajaran. Media visual terdiri atas media yang non *projected* visual (tidak dapat diproyeksikan) dan *project* visual (media yang dapat diproyeksikan). Media yang dapat diproyeksikan berupa *still pictures* (gambar diam) atau *motion picture* (bergerak). Adapun media yang tidak dapat diproyeksikan adalah gambar yang disajikan secara fotografik, misalnya gambar tentang manusia, binatang, tempat, atau objek lainnya yang ada kaitannya dengan bahan atau isi pelajaran, yang akan disampaikan kepada peserta didik. Media yang diproyeksikan adalah media yang menggunakan alat proyeksi (*proyektor*) sehingga gambar atau tulisan tampak pada layar.

Ada beberapa jenis media pembelajaran yang dapat digunakan dalam pembelajaran. Secara garis besar, media pembelajaran dapat dikelompokkan menjadi tiga yaitu: (1) media visual, (2) media audio, dan (3) media audio visual. Media visual adalah media yang hanya dapat

dilihat dengan menggunakan indra penglihatan. Misalnya, guru menjelaskan dengan menggunakan beberapa media gambar mati atau bergerak, seperti:

1) Gambar Mati/Diam

Gambar mati atau disebut pula sebagai gamabar diam adalah gambar-gambar yang disajikan secara fotografik. Misalnya tentang gambar sesuatu tetapi ada kaitannya dengan kompotensi yang akan dibentuk pada siswa atau materi pelajaran yang akan dipelajari siswa, seperti gambar atau foto tubuh manusia

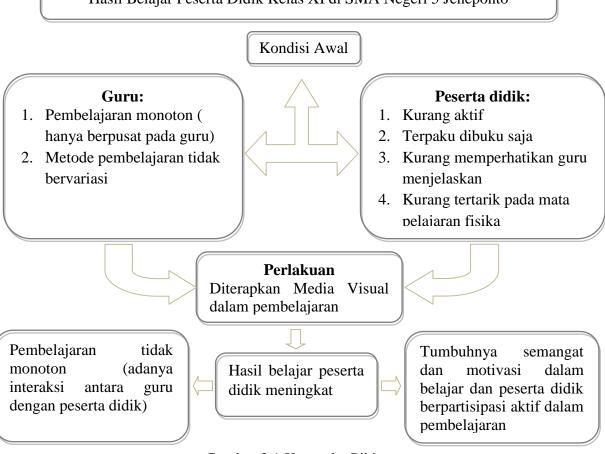
2) Media Grafis

Media grafis termasuk di dalamnya grafik, bagan, diagram, poster, dan kartun. Media grafis adalah media dipandang dua dimensi yang dirancang secara khusus untuk mengkomunikasikan pembelajaran (bukan fotografik).

3) Model dan Realia

Realia dan model adalah alat bantu visual dalam pembelajaran yang berfungsi memberikan pengalaman langsung. Realia merupakan model objek nyata dari suatu benda. Siswa belajar langsung dari objek yang sedang dipelajari. Proses belajar yang dikembangkan dapat mengakomodasi tentang pembelajaran berbasis pengalaman. (Rusman, 2017: 213-229)

Adapun kelebihan media visual sebagai berikut:


- (a) Media bersifat konkrit, lebih realistis dibandingkan dengan media verbal atau non verbal sehingga lebih memudahkan dalam pengaplikasiannya
- (b) Media visual dapat mengatasi keterbatasan pengalaman yang dimiliki oleh para peserta didik dan dapat melampaui batasan ruang kelas.
- (c) Lebih efektif dan efesien dibandingkan media verbal lainnya, pendidik dapat menggunakan semua jenis visual yang ada
- (d) Penggunaannya praktis, maksudnya media visual ini mudah dioperasikan oleh setiap orang

B. KERANGKA PIKIR

Belajar merupakan proses yang dilakukan individu untuk memperoleh suatu perubahan tingkah laku, sebagai hasil dari pengalaman. Keberhasilan peserta didik dalam melakukan aktivitas belajar dapat dilihat dari hasil belajarnya. Jadi disini yang dimaksud hasil belajar yaitu tolak ukur kemampuan-kemampuan yang dimiliki peserta didik setelah mereka menerima pengalaman belajarnya. Pembelajaran dikatakan mencapai sasaran dan tujuan pembelajaran jika peserta didik menunjukkan peningkatan dalam penguasaan terhadap materi pelajaran yang harus dikuasai. Materi pelajaran dapat dikuasai dengan sepenuhnya jika diberikan suatu metode atau strategi yang sesuai dan tepat. Salah satu upaya untuk membantu peserta didik dapat menguasai materi pelajaran adalah dengan

menerapkan media visual pembelajaran. Melalui media visual peserta didik mudah menerima dan memahami pelajaran yang diberikan.

Penerapan Media Visual Pada Pembelajavan Fisika Terhadap Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA Negeri 5 Jeneponto

Gambar 2.1 Kerangka Pikir

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Jenis penelitian yang dilakukan adalah *Pre-Eksperimental Design* dengan menggunakan design penelitian yaitu *one-Group Pretest-Posttest Design*. Dalam penelitian *Pre-Eksperimen* ini, bermaksud untuk membandingkan keadaan sebelum dan sesudah diberi perlakuan, sehingga keberhasilan atau keefektifan media pembelajaran yang diujikan dapat dilihat dari perbedaan nilai tes sebelum diberi perlakuan (test awal) dan nilai tes setelah diberi perlakuan (test akhir). Oleh karena itu untuk melihat pengaruhnya, peneliti memberikan *poss test* (test akhir) di akhir penelitian. Soal yang diberikan saat posttest serupa atau sama dengan soal yang diberikan pada saat *pre test*. Penelitian tersebut diilustrasikan sebagai berikut:

 O_1 X O_2

Dengan,

O₁: Nilai *Pre-Test* (sebelum diberi perlakuan)

X : Perlakuan (treatment) menggunakan media visual

O₂ : Nilai *Poss-Test* (setelah diberi perlakuan)

(Sugiyono, 2016: 110)

B. Lokasi Penelitian

Penelitian ini dilakukan di SMA Negeri 5 Jeneponto yang bertempat di Desa Togo-togo Kecamatan Batang Kabupaten Jeneponto.

C. Variabel Penelitian

Dalam penelitian ini terdapat dua variabel yaitu variabel bebas dan variabel terikat. Variabel bebas merupakan variabel yang mempengaruhi

variabel dependen (terikat), sedangkan variabel terikat adalah variabel yang dipengaruhi oleh variabel bebas pada penelitian ini:

- Variabel bebas adalah media visual, sedangkan
- Variabel terikat adalah hasil belajar peserta didik

D. Populasi dan Sampel

Populasi adalah keseluruhan dari subjek, sedangkan sampel adalah sejumlah anggota yang dipilih atau diambil dari suatu populasi. Populasi dari penelitian ini adalah seluruh peserta didik kelas XI yang terdiri atas 4 kelas, dimana setiap kelas terdiri atas 41 orang. Jumlah keseluruhan peserta didik sebanyak 164 orang. Sedangkan sampel yang digunakan dalam penelitian ini dilakukan secara *simple random sampling* dan terpilih kelas XI MIA.3 yang berjumlah 41 orang sebagai sampel penelitian.

E. Defenisi Operasional Variabel

- 1. Media visual merupakan media yang digunakan dalam pembelajaran untuk menyampaikan pesan atau informasi pengajaran yang berfungsi menarik perhatian peserta didik dalam menerima materi pelajaran yang disajikan dalam bentuk gambar, video, serta simulasi melalui slide *power point*.
- 2. Hasil belajar merupakan skor yang dicapai peserta didik melalui tes hasil belajar yang dilakukan dalam dua tahap yaitu *pretes* dan *posttes*.

F. Instrumen Penelitian

Instrumen tes yang digunakan dalam penelitian ini adalah berupa tes hasil belajar peserta didik. Tes hasil belajar adalah alat ukur yang digunakan untuk melakukan pengukuran guna pengumpulan data hasil belajar. Sebagai

sebuah alat ukur maka tes hasil belajar harus memenuhi syarat sebagai alat ukur yang baik. Alat ukur yang baik harus memenuhi dua syarat yaitu validitas dan reliabilitas. Oleh karena itu, sebelum digunakan untuk mengumpulkan data hasil belajar terlebih dahulu di uji validitas dan reliabilitasnya.

1) Uji Validasi

Validasi merupakan ukuran yang menyatakan kevalidan atau kesahihan suatu instrumen. Sebuah instrumen dikatakan valid apabila mampu mengukur apa yang diinginkan dan dapat mengungkap data dari variabel yang diteliti secara tepat. Dalam penelitian ini yang diuji validitasnya adalah validitas isi yaitu apakah instrumen penelitian yang dibuat dapat mewakili atau mencakup aspek-aspek yang ingin diteliti. Untuk menguji validitas butir-butir instrumen soal dilakukan konsultasi terlebih dahulu dengan ahli untuk meminta pertimbangan. Berdasarkan hasil pertimbangan validator dari 70 butir soal yang dibuat dalam bentuk pilihan ganda dengan 5 alternatif jawaban, terdapat 3 butir soal yang drop atau tidak layak digunakan. Instrumen soal yang telah dipertimbangkan oleh ahli lalu diuji coba.

Pelaksanaan uji coba soal tes dilaksanakan pada tanggal 18 Oktober 2017 pada kelas XII di SMAN 5 Jeneponto dengan jumlah responden 33 peserta didik. Pemberian skor pada instrumen tes adalah skor 1 untuk tiap jawaban yang benar dan 0 untuk jawaban salah. Dari hasil uji coba tersebut kemudian dianalisis dan dipilih butir soal yang terbukti valid untuk selanjutnya digunakan dalam penelitian.

Uji validitas dalam penelitian ini dilakukan dengan bantuan program *Microsoft Excel*. Berdasarkan hasil analisis validitas, terdapat 32 butir soal yang valid dari 67 butir soal. Butir soal yang di gunakan untuk penelitian adalah butir soal yang telah terbukti valid dan reliable. Salah satu cara menguji validasi adalah menggunakan teknik korelasi *pearson product moment*.

$$\gamma_{pbi} = \frac{Mp - Mt}{St} \sqrt{\frac{p}{q}}$$

Dengan,

 γ_{pbi} = koefisien korelasi biseral

 $M_P = \mbox{rerata skor dari subjek yang menjawab betul bagi item}$

yang dicari validasinya

 M_t = Rerata skor total

 S_t = standar deviasi dari skor total

p = proporsi peserta didik yang menjawab benar

Banyaknya peserta didik yang menjawab benar

P — Jumla h seluru h peserta didik

q = proporsi peserta didik yang menjawab sala (q = 1 - p)

2) Uji Reliabilitas

Reliabilitas adalah ketetapan atau ketelitian suatu alat ukur. Instrumen dikatakan reliabel apabila suatu instrumen cukup dapat dipercaya untuk digunakan sebagai alat pengumpul data. Uji reliabilitas yang akan digunakan untuk menguji hasil belajar adalah dengan menggunakan rumus K-R 20 karena data yang digunakan merupakan instrumen dengan skor 1 dan 0. Adapun rumus yang dapat digunakan untuk mengetahui reliabilitas suatu instrumen tes adalah sebagai berikut:

$$\mathbf{r}_{11} = \frac{n}{n-1} \, \frac{S^2 - \sum pq}{S^2}$$

Dengan:

 r_{11} = reliabilitas instrument

p = peserta tes yang menjawab benar
 q = peserta tes yang menjawab salah
 Σpq = jumlah hasil perkalian antara p dan q

n = banyak soal

S = Standar deviasi dari tes

G. Teknik Pengumpulan Data

Teknik pengumpulan data merupakan langkah yang paling utama dalam penelitian, karena tujuan utama dari penelitian adalah mendapatkan data. Untuk mendapatkan data yang akurat dalam penulisan ini, penulis menggunakan teknik sebagai berikut:

a. Wawancara

Wawancara dilakukan dalam bentuk komunikasi verbal semacam percakapan yang bertujuan untuk memperoleh informasi awal tentang keadaan peserta didik saat kegiatan pembelajaran, media pembelajaran yang digunakan, dan masalah yang dihadapi guru.

b. Documentasi

Documentasi digunakan untuk mendapatkan data awal dari populasi penelitian, berupa daftar nama peserta didik kelas XI.

c. Tes

Tes dilakukan untuk mengetahui hasil belajar fisika. Soal tes yang digunakan berupa soal pilihan ganda. Tes ini dilakukan dua kali, yaitu sebelum perlakuan (*pre test*) dan setelah perlakuan (*poss test*).

H. Teknik Analisis Data

Data dalam penelitian ini diolah dengan menggunakan data statistik deskriptif, dan analisis N-Gain. Analisis deskriptif digunakan untuk mengkategorikan tingkat hasil belajar peserta didik selama proses belajar mengajar berlangsung. Sedangkan analisis N-Gain digunakan untuk mengetahui seberapa besar peningkatan hasil belajar peserta didik.

1. Teknik Analisis Deskriptif

Teknik analisis deskriptif yang digunakan untuk hasil belajar pada aspek kognitif adalah penyajian data berupa nilai rata-rata, standar deviasi, rata-rata distribusi frekuensi, nilai maksimal, nilai minimal, berdasarkan skor ideal.

a. Menentukan nilai rata-rata distribusi frekuensi digunakan rumus sebagai berikut:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

Dengan,

 \overline{x} : rata-rata f_i : frekuensi x_i : nilai

(Arif Tiro. 2015: 126-127)

b. Menentukan standar deviasi menggunakan rumus:

$$\textit{Standar deviasi } (S^2) = \frac{\sum f_i x_2^2 \frac{\left(f_i x_i\right)^2}{n}}{n-1}$$

Dengan

S²: Varians
X_i: Skor siswa
x: Skor rata-rata

n : Banyaknya subjek penelitian

(Arif Tiro. 2015: 173-182)

Untuk mengetahui nilai yang diperoleh peserta didik, maka skor dikonversi dalam bentuk nilai dengan menggunakan rumus sebagai berikut:

$$N = \frac{SS}{SI} \times 100$$

Dengan:

N = Nilai peserta didik

SS = Skor hasil belajar peserta didik

SI = Skor ideal

Tabel 3.1 Kategori Skor Hasil Belajar Peserta Didik

Rentang	Kategori
81 - 100	Sangat tinggi
61 - 80	Tinggi
41 - 60	Sedang
21 – 40	Rendah
0 - 20	Sangat rendah

(Riduwan, 2004:20)

Untuk keperluan penelitian dilakukan adaptasi kategori skor hasil belajar belajar menurut (Riduwan, 2004:20) pada tabel 3.2 berikut:

Tabel 3.2 Adaptasi Kategori Skor Hasil Belajar

Interval	Kategori
0-6	Sangat Rendah
7 – 13	Rendah
14 - 20	Sedang
21 - 27	Tinggi
28 – 34	Sangat Tinggi

2. Analisis Inferensial (Uji N-Gain)

Hasil penelitian yang diperoleh terdiri atas data awal dan data akhir kemudian dihitung peningkatan skor yang dapat dijelaskan dengan nilai Ngain (selisih antara skor akhir dan skor awal). N-gain diperoleh dari skor rerata *posttes* dikurangi dengan skor *pretes*. Standar N-gain dapat dihitung dengan menggunakan rumus berikut:

$$g = \frac{s_f - s_i}{n_{maks} - s_1}$$

Dengan kriteria interpertasi indeks gain yang dikemukakan oleh Haake, yaitu

Table 3.2 Kriteria Indeks Gain

Indeks Gain	Kriteria
g > 0.70	Tinggi
$0,70 \ge g \ge 0,30$	Sedang
0,30 > g	Rendah

(Meltzer, 2003:153)

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Hasil Penelitian

Uraian hasil penelitian pada dasarnya merupakan jawaban terhadap rumusan masalah. Hasil penelitian diambil dari data yang diperoleh pada saat penelitian meliputi data skor *pretest* (sebelum diberi perlakuan) dan *posttest* (setelah diberi perlakuan) dengan jumlah peserta didik sebanyak 41 orang. Penilian hasil belajar peserta didik dilakukan dengan menggunakan tes tertulis dengan bentuk pilihan ganda sebanyak 32 butir soal.

Hasil belajar peserta didik dapat dilihat dari skor rata-rata *pre-test* dan *post-test*. Sedangkan peningkatan hasi belajar peserta didik kelas XI MIA.₃ SMA Negeri 5 Jeneponto dapat dilihat pada nilai N-Gainnya. Tes yang di gunakan pada saat *pre-test* dan *post-test* adalah tes yang sama dalam hal jumlah maupun bentuknya. Hanya saja, soal *post-test* yang di gunakan adalah soal *pre-test* yang di ubah posisi nomor urutnya. Hal ini di maksudkan untuk menguji ketelitian peserta didik dalam mengerjakan soal tes. Pengambilan data hasil belajar di maksudkan untuk mengetahui hasil *pre-test* dan *post-test* peserta didik kelas XI MIA.₃ SMA Negeri 5 Jeneponto. Adapun diperoleh hasil belajar peserta didik pada *pre test* dan *poss test* pada (lampiran D.5 halaman 270).

1. Hasil Analisis Deskriptif

a) Analisis Hasil Belajar Peserta Didik Sebelum Diterapkan Media Visual Dalam Pembelajaran Fisika

Tes ini bertujuan untuk mengetahui sejauh mana kemampuan peserta didik tentang materi yang akan diajarkan (kondisi awal). Sebelum tes dilaksanakan peserta didik diberi penjelasan seperlunya kemudian diberi lembaran soal untuk dikerjakan secara individu. Sehingga berdasarkan hasil tes yang diberikan peserta didik pada saat *pre test*, maka diperoleh skor hasil analisis deksriptif untuk skor mata pelajaran fisika pada peserta didik kelas XI MIA.3 SMA Negeri 5 Jeneponto tahun ajaran 2017/2018 dapat dilihat pada (lampiran D.1 halaman 266).

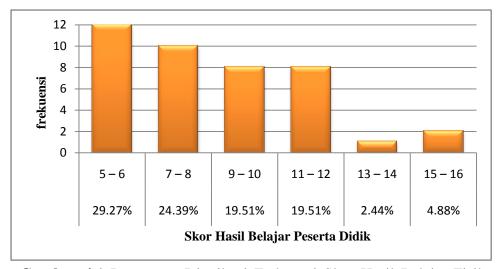
Tabel 4.1 Skor Peserta Didik Kelas XI MIA.₃ SMA Negeri 5 Jeneponto pada Saat *Pre Tes*

ponto pada baat 176 165	
Statistik	Skor Statistik
Jumlah sampel	41
Skor ideal	32
Skor tertinggi	16
Skor terendah	5
Skor rata-rata	8,69
Standar deviasi	2,83

(Sumber: Data primer yang diolah)

Berdasarkan tabel 4.1 di atas dapat dilihat bahwa dari 41 orang peserta didik, diperoleh skor hasil belajar peserta didik dengan skor tertinggi adalah 16 sedangkan skor terendahnya adalah 5. Dengan skor rata-rata peserta didik yang diperoleh yaitu 8,69. Selain itu, diperoleh standar deviasi sebesar 2,83 dengan skor ideal 32.

Jika skor hasil belajar peserta didik Kelas XI MIA.3 SMA Negeri 5 Jeneponto di analisis dengan menggunakan presentase pada distribusi frekuensi sehingga kita dapat melihat perbandingan dari data dapat di lihat pada tabel berikut ini.


Tabel 4.2 Distribusi Frekuensi Hasil *Pre test* Peserta Didik Kelas XI MIA.₃ SMA Negeri 5 Jeneponto

Skor	F	Persentase (%)
5 – 6	12	29,27
7 – 8	10	24,39
9 – 10	8	19,51
11 – 12	8	19,51
13 – 14	1	2,44
15 – 16	2	4,88
Jumlah	41	100,00

(Sumber: Data primer yang diolah)

Tabel di atas merupakan tabel distribusi frekuensi pengetahuan awal peserta didik sebelum diberi perlakuan (dalam penelitian ini perlakuan yang diberikan adalah media visual dalam kegiatan belajar mengajar di kelas). Berdasarkan dari tabel 4.2 di atas dapat dilihat bahwa terdapat 12 peserta didik yang memperoleh skor antara 5 sampai 6. Pada Interval 7 sampai 8, terdapat 10 peserta didik. Selanjutnya pada interval skor 9 sampai 10, terdapat 8 peserta didik. Jumlah peserta didik yang memperoleh skor antara 11 sampai 12 sebanyak 8 peserta didik. Terdapat 1 peserta didik yang memperoleh skor antara 13 sampai 15. Pada Interval terakhir, terdapat 2 peserta didik yang memperoleh skor antara 15 sampai 16.

Data distribusi Frekuensi *Pre test* pada Tabel 4.2 dapat disajikan dalam grafik sebagai berikut:

Gambar 4.1 Presentase Distribusi Frekuensi Skor Hasil Belajar Fisika Kelas XI MIA.₃ SMA Negeri 5 Jeneponto pada *Pre Test*

b) Analisis Hasil Belajar Peserta Didik Setelah diterapkan Media Visual Dalam Pembelajaran Fisika

Untuk mengetahui adakah perbedaan antara hasil belajar peserta didik sebelum diberi perlakuan dan setelah diberi perlakuan, maka perlu dilakukan tes akhir (*poss test*) yang diberikan kepada peserta didik. Dimana soal tes yang diberikan pada *post test* sama pada saat *pre test*.

Data yang diperoleh, selanjutnya dianalisis secara statistik sehingga dari 41 peserta didik hasil *poss tes* yang diperoleh setelah diberikan perlakuan diperoleh skor mata pelajaran fisika pada peserta didik kelas XI MIA.₃ SMA Negeri 5 Jeneponto tahun ajaran 2017/2018 dapat dilihat pada (lampiran D.3 halaman 268).

Tabel 4.3 Skor Peserta Didik Kelas XI MIA.₃ SMA 5 Jeneponto

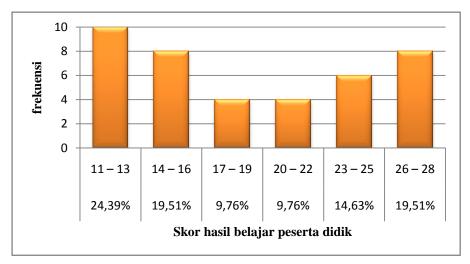
pada Saat Poss Test

Statistik	Skor Statistik
Jumlah sampel	41
Skor ideal	32
Skor tertinggi	28
Skor terendah	11
Skor rata-rata	19,07
Standar deviasi	6,42

(Sumber: Data primer yang diolah)

Dari hasil *post test* terlihat bahwa setelah diberi *treatment* (perlakuan) berupa penggunaan media visual dalam kegiatan pembelajaran di kelas, terjadi peningkatan hasil belajar peserta didik. Dilihat dari tabel di atas menunjukan bahwa dari 41 orang peserta didik skor yang tertinggi diperoleh adalah 28, sedangkan skor terendah adalah 11. Sehingga skor rata-rata yang diperoleh yaitu 19,07 dengan standar deviasinya adalah 6,42.

Berdasarkan data yang diperoleh setelah diberi perlakuan dengan menerapkan media visual dalam kegiatan belajar mengajar, maka skor hasil belajar peserta didik kelas XI MIA.3 SMA Negeri 5 Jeneponto, dianalisis menggunakan persentase pada distribusi frekuensi, dapat dilihat pada tabel berikut:


Tabel 4.4 Distribusi Frekuensi Hasil *Poss Test* Peserta Didik Kelas

XI MIA.₃ SMA Negeri 5 Jeneponto

Skor F Persentase (%)				
		` ′		
11 – 13	10	24,39		
14 – 16	8	19,51		
17 – 19	4	9,76		
20 – 22	4	9,76		
23 – 25	6	14,63		
26 – 28	8	19,51		
Jumlah	41	100,00		

(Sumber: Data primer yang diolah)

Data distribusi Frekuensi *Poss test* pada Tabel 4.4 dapat disajikan dalam grafik sebagai berikut:

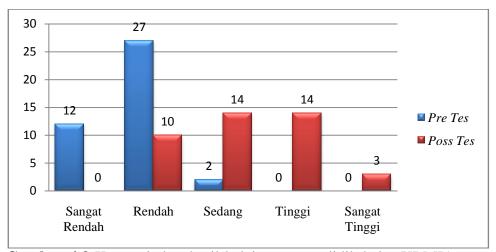
Gambar 4.2 Presentase Distribusi Frekuensi Skor Hasil Belajar Fisika Kelas XI MIA.₃ SMA Negeri 5 Jeneponto pada *Post Test*

Tabel 4.4 di atas menunjukan bahwa terdapat 10 peserta didik yang memperoleh skor antara 11 sampai 13. Pada interval 14 sampai 16 terdapat 8 peserta didik. Selanjutnya, terdapat 4 peserta didik yang memperoleh skor antara 17 sampai 19. Jumlah peserta didik yang memperoleh skor antara 20 sampai 22 sebanyak 4 peserta didik. Terdapat 6 peserta didik yang memperoleh skor antara 23 sampai 25.

Pada interval terakhir yaitu 26 sampai 8 hasil *poss test* yang diperoleh sebanyak 8 peserta didik

Kategori skor hasil belajar peserta didik kelas XI MIA.₃ SMA Negeri 5 Jeneponto saat *Pretest* dan *Posttest* dengan jumlah sampel 41 peserta didik, dapat dilihat pada Tabel 4.5:

Tabel 4.5 Kategori Skor Hasil Belajar Peserta Didik Kelas XI


MIA.3 SMA Negeri 5 Jeneponto Saat Pretest dan Posttest

Interval	Nilai	Frekuensi (Pretest)	Frekuensi (Postest)	Kategori
0-6	0 - 20	12	0	Sangat Rendah
7 – 13	21 - 40	27	10	Rendah
14 - 20	41 – 60	2	14	Sedang
21 - 27	61 – 80	0	14	Tinggi
28 - 34	81 – 100	0	3	Sangat Tinggi

(Sumber: Data primer yang diolah)

Tabel 4.5 menunjukkan kategori skor hasil belajar Fisika peserta didik kelas XI MIA.3 SMA Negeri 5 Jeneponto saat *Pretest* yang mendapat kategori sangat rendah terdapat 12 peserta didik, kategori rendah terdapat 27 peserta didik, kategori sedang terdapat 2 peserta didik, sedangkan kategori tinggi dan kategori sangat tinggi terdapat 0 peserta didik. Sedangkan hasil belajar Fisika peserta didik XI MIA.3 SMA Negeri 5 Jeneponto saat *Posttest* yang mendapat kategori sangat rendah terdapat 0 peserta didik, kategori rendah terdapat 10 peserta didik, kategori sedang terdapat 14 peserta didik, kategori tinggi terdapat 14 peserta didik dan kategori sangat tinggi terdapat 3 peserta didik.

Data distribusi kategorisasi dan frekuensi hasil belajar Fisika pada *Pretest* dan *Posttest* dapat disajikan dalam diagram sebagai berikut:

Gambar 4.3 Kategori skor hasil belajar peserta didik kelas XI MIA.₃ SMA Negeri 5 Jeneponto saat *Pretest* dan *Posttest*

c) Rekapitulasi Hasil Belajar Pre test Dan Poss Test

Data Hasil Belajar Fisika Kelas XI MIA. $_3$ SMA Negeri 5 Jeneponto pada $pre\ test$ dan $Poss\ Test$

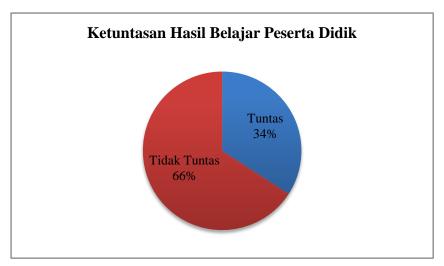
Tabel 4.6 Rekapitulasi Hasil Belajar Pre test Dan Poss Test

Statistik	Nilai Statistik		
Stausuk	Pre test	Poss Test	
Jumlah Peserta didik	41	41	
Skor ideal	32	32	
Skor tertinggi	16	28	
Skor terendah	5	11	
Skor rata-rata	8,69	19,07	
Standar deviasi	2,83	6,42	

(Sumber: Data primer yang diolah)

Berdasarkan tabel 4.5 di atas, terlihat bahwa dari hasil *pre test* dan *poss test*. Sebelum diajar dengan menggunakan media visual skor tertinggi yang dicapai oleh peserta didik pada *pre test*,

yaitu 16 dan skor terendahnya adalah 5, sehingga skor rata-ratanya 8,69 dengan standar deviasi 2,83. Setelah diajar dengan media visual, skor pada *poss test* berubah yaitu skor tertinggi menjadi 28 dan skor terendah 11sehingga skor rata-ratanya 19,07 dengan standar deviasi 6,42. Maka dapat disimpulkan bahwa dengan menggunakan media visual dalam pembelajaran khususnya dalam pembelajaran fisika dapat meningkatkan hasil belajar peserta didik.


Ketuntasan hasil belajar peserta didik dapat disajikan dalam dalam bentuk tabel seperti berikut ini. Dapat dilihat pada (lampiran D.6 halaman 271).

Tabel 4.7 Ketuntasan Hasil Belajar Peserta Didik Kelas XI MIA.₃ SMA Negeri 5 Jeneponto

Kategori	Frekuensi	Presentase (%)
Tuntas	14	34
Tidak Tuntas	27	66

(Sumber: Data primer yang diolah)

Berdasarkan dari tabel menunjukan bahwa analisis hasil belajar dari 41 peserta didik diperoleh 14 peserta didik dalam kategori tuntas dan 27 peserta didik tidak tuntas dengan nilai KBM 75. Presentase ketuntasan peserta didik disajikan dalam bentuk diagram lingkaran gambar berikut:

Gambar 4.4 Persentase Ketuntasan Hasil Belajar Peserta Didik

Berdasarkan gambar diatas menunjukan presentase ketuntasan belajar peserta didik diperoleh 34% peserta didik yang tuntas dan 66% peserta didik tidak tuntas.

2. Analisis Inferesial (Uji N-Gain)

Untuk mengetahui peningkatan hasil belajar fisika peserta didik berada pada kategori rendah, sedang dan tinggi maka dianalisis dengan analisis N-Gain ternormalisasi. Hasil belajar fisika yang terjadi sebelum dan setelah pembelajaran dihitung dengan rumus gain ternormalisasi (N-Gain).

Tabel 4.6 distribusi frekuensi dan presentase tingkat hasil belajar fisika peserta didik pada kelas XI SMA Negeri 5 Jeneponto berdasarkan rentang gain. Hasil perhitungan dapat dilihat pada (lampiran D.8 halaman 274).

Tabel 4.8 Distribusi Frekuensi dan Persentase Hasil Belajar Peserta

Didik Kelas XI MIA.3 SMA Negeri 5 Jeneponto

Rentang	Kategori	Frekuensi	Persentase (%)	Gain Ternormalisasi (G)
g > 0.70	Tinggi	10	24.39	
$0,70 \ge g \ge 0,30$	Sedang	16	39.02	0.45
$g \le 0.30$	Rendah	15	36.59	0,45
Jumla	h	41		

(Sumber: Data primer yang diolah)

Berdasarkan dari hasil analisis skor rata-rata gain ternormalisasi yaitu 0,45 termasuk dalam kategori sedang, peserta didik yang masuk dalam kriteria gain tinggi berjumlah 10 peserta didik dan kriteria gain sedang berjumlah 16 peserta didik, sedangkan nilai kriteria gain rendah berjumlah 15 peserta didik.

B. Pembahasan

Penelitian ini merupakan penelitian *One-Group Pre Test-Poss Test Design*. Pada penelitian ini dilakukan 3 tahapan yaitu tes awal (*pre-test*). Memberikan perlakuan berupa pembelajaran dengan menerapkan media visual dalam proses belajar mengajar. Media visual yang digunakan berupa gambar, video, dan simulasi yang disajikan dalam bentuk *power point*. Setelah dilakukan pembelajaran dengan menerapkan media visual, dilaksanakan *poss test. Posstes* dilakukan untuk mengetahui hasil belajar peserta didik dalam pembelajaran. Adapun sampel dalam penelitian adalah peserta didik Kelas XI MIA.3 SMA Negeri 5 Jeneponto dengan jumlah peserta didik sebanyak 41 orang yang ditentukan secara *simple random sampling*.

Hasil penelitian menunjukan bahwa dengan menerapkan media visual dalam kegiatan belajar mengajar dapat meningkatkan hasil belajar peserta didik. Peningkatan hasil belajar peserta didik dapat diketahui dari hasil tes. Dari hasil tes tersebut dilakukan penilaian terhadap hasil belajar. Setelah penilaian terhadap hasil belajar selesai, barulah dapat kita lihat sejauh mana pengetahuan peserta didik terhadap materi yang telah diajarkan, hal tersebut dapat dilihat dari skor yang diperoleh peserta didik.

Instrumen tes yang digunakan dalam penelitian ini berupa tes hasil belajar peserta didik. Namun, sebelum tes digunakan untuk mengambil data dalam penelitian, terlebih dahulu dilakukan validasi oleh ahlinya. Kemudian dilakukan uji coba instrumen yang dilaksanakan kelas XII SMA Negeri 5 Jeneponto yang lokasinya sama dengan lokasi dilakukan penelitian. Hasil uji

coba tersebut dianalisis validasi dan reliabilitas dengan bantuan program *Microsoft Excel*. Dari hasil analisis diperoleh 32 item soal valid dan reliable dari jumlah keseluruhan sebanyak 67 item soal.

Penelitian ini dilaksanakan pada tiga tahap; dimana pada tahap awal, peneliti memberikan tes awal (pre test) untuk mengetahui sejauh mana pemahaman peserta didik terhadap materi yang akan di ajarkan. Setelah tes diberikan, diperoleh hasil belajar peserta didik kemudian di analisis secara deskriptif dan uji N-Gain. Berdasarkan analisis deskriptif tentang hasil belajar fisika peserta didik kelas XI MIA.3 SMA Negeri 5 Jeneponto yang diajar dengan menggunakan media visual, menunjukkan bahwa dari hasil pre-tes yang diperoleh ternyata kemampuan masing-masing peserta didik masih sangat rendah, hal ini dapat dilihat dari skor rata-rata pre-testnya hanya sebesar 8,69. Selanjutnya, dalam kegiatan belajar mengajar diberikan sebuah treatment (perlakuan) berupa penerapan media visual. Setelah dilakukan pembelajaran dengan menerapkan media visual terjadi peningkatan skor ratarata post-tes peserta didik, yaitu 19,07. Hal ini dapat menunjukkan bahwa pembelajaran dengan menggunakan media visual dalam proses belajar mengajar memiliki dampak positif dalam meningkatkan hasil belajar peserta didik.

Setelah dilakukan analisis deskriptif, selanjutnya dilakukan analisis uji N-Gain. Oleh karena itu, untuk mengetahui pengaruh media visual dalam pembelajaran terhadap peningkatan hasil belajar fisika peserta didik, itu dapat dilakukan dengan melakukan uji N-Gain. Berdasarkan skor rata-rata N-Gain

yang diperoleh dari hasil belajar peserta didik Kelas XI MIA.₃ SMA Negeri 5 Jeneponto berada pada kategori sedang.

Dari hasil analisis data, diperoleh bahwa terjadi peningkatan hasil belajar peserta didik setelah diajar menggunakan media visual. Hal ini dapat dilihat pada skor rata-rata yang diperoleh peserta didik pada saat *pre test* dan *poss test*.

Penerapan media visual dalam pembelajaran merupakan konsep belajar yang sangat membantu guru dalam menyampaikan materi ajar. Selain itu, dapat memicu ketertarikan peserta didik terhadap pembelajaran khususnya dalam pembelajaran fisika, sehingga tidak mengherankan jika peserta didik diajar dengan menerapkan media visual, peserta didik termotivasi untuk mencapai skor ketuntasan belajar minimal yang telah ditetapkan sebelumnya. Dengan menerapkan media visual, peserta didik lebih mudah memahami materi yang diajarkan dikarenakan peserta didik dapat mengamati secara langsung melalui gambar-gambar atau simulasi yang ditampilkan.

Namun, terkadang pemanfaatan media dalam pembelajaran menimbulkan berbagai kendala-kendala bagi guru. Kendala pemanfaatan media dapat dilihat dari kendala guru dalam memilih dan menggunakan media dalam pembelajaran. Peneliti menyadari bahwa hasil penelitian yang telah dilakukan terdapat kendala-kendala yang dihadapi. Adapun kendala yang peneliti hadapi ketika menerapkan media visual dalam pembelajaran yaitu, mengenai keterbatasan waktu. Dimana waktu yang digunakan sangat terbatas.

BAB V

PENUTUP

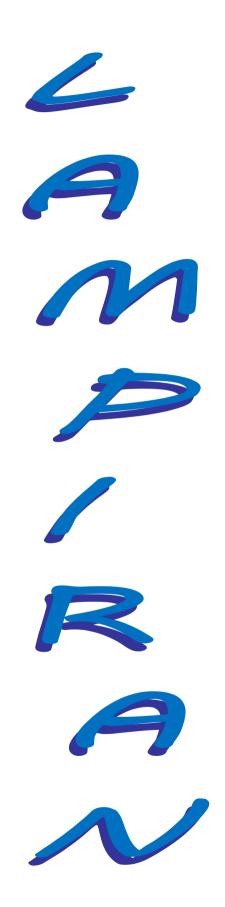
A. Kesimpulan

Berdasarkan hasi penelitian dan pembahasan, maka dapat disimpulkan bahwa:

- Hasil belajar Fisika peserta didik kelas XI MIA.₃ SMA Negeri 5
 Jeneponto sebelum diajar dengan menerapkan media visual skor rata-rata yang diperoleh yaitu 8,69 berada pada kategori rendah
- Hasil belajar Fisika peserta didik kelas XI MIA.₃ SMA Negeri 5
 Jeneponto setelah diajar dengan menerapkan media visual skor rata-rata yang diperoleh yaitu 19,07 berada pada kategori sedang
- 3. Terdapat peningkatan hasil belajar Fisika peserta didik kelas XI MIA.₃ SMA Negeri 5 Jeneponto setelah diajar dengan menerapkan media visual penilaiannnya berada pada kategori sedang, dengan demikian penerapan media visual dalam pembelajaran khususnya dalam pembelajaran fisika ini dapat meningkatkan hasil belajar peserta didik.

B. Saran

Mengingat dari hasil penelitian ternyata pembelajaran dengan menggunakan media visual dapat meningkatkan hasil belajar peserta didik, maka saran yang dapat peneliti berikan adalah sebagai berikut:


 Bagi guru, pembelajaran yang memanfaatkan media yang menarik tentu akan meningkatkan minat belajar dan antusiasme peserta didik sehingga pembelajaran tidak menoton serta bisa membuat peserta didik menjadi

- aktif didalam pembelajaran. Sehingga dengan menerapkan media visual dalam pembelajaran, khususnya dalam pembelajaran fisika dapat merangsang minat dan mengatasi kebosanan peserta didik terhadap materi.
- 2. Bagi sekolah, dalam membina peserta didiknya menjadi mandiri, sekolah pun harus berperan aktif dalam menanamkan karakter mandiri di diri peserta didik. Selain itu, sekolah pun dapat menyediakan sarana dan prasarana yang memadai agar ketika guru ingin menggunakan media visual khususnya pada pembelajaran fisika tidak kesulitan untuk menerapkan dalam proses pembelajaran
- 3. Bagi peserta didik, dengan menggunakan bantuan media dalam pembelajaran peserta didik tidak lagi merasa jenuh atau bosan saat proses pembelajaran berlangsung
- 4. Mengingat penelitian ini masih sederhana, sehingga perlu diadakan penelitian lebih lanjut.

DAFTAR PUSTAKA

- Arsyad, A. 2011. Media Pembelajaran. Jakarta: PT Raja Grafindo.
- Daryanto. 2013. Media Pembelajaran Peranannya Sangat Penting dalam Mencapai Tujuan Pembelajaran. Yogyakarta: Penerbit Gava Media.
- Majid, A. 2015. *Penilaian Autentik Proses dan Hasil Belajar*. Bandung: PT. Remaja Rosdakarya.
- Meltzer, D. 2003. The relationship Between Mathematics Preparation And Conceptual Learning Gains: A Possible "Hidden Variable" In Diagnostic Pretes Scores. Jurnal Department of Physics And Astronomy, Lowa State University, Ames, Lowa 50011.
- Purwanto. 2016. Evaluasi Hasil Belajar. Yogyakarta: Penerbit Pustaka Pelajar.
- Riduwan. 2012. Dasar-Dasar Statistik. Bandung: Alfabeta.
- Rufaida, S. (2016). Penerapan Strategi Mastery Learning Dengan Menggunakan Media Visual Dalam Pembelajaran Fisika Siswa Kelas X MAN 1 Makassar. *Jurnal Pendidikan Fisika Universitas Muhammadiyah Makassa*, 4(1). Retrieved from http://journal.unismuh.ac.id/index.php/jpf/article/view/293
- Rusman. 2017. Belajar Dan Pembelajaran Berorientasi Standar Proses Pendidikan. Jakarta: Penerbit Kencana.
- Sagala, S. 2014. Konsep dan Makna Pembelajaran. Bandung: Penerbit ALFABETA.
- Setyosari, P. 2015. *Metode Penelitian pendidikan dan pengembangan*. Jakarta: Prenemedia Group.
- Sudjana. 2017. *Penilaian Hasil Proses Belajar Mengajar*. Bandung: Penerbit PT. Remaja Rosdakarya.
- Sugiyono. 2016. *Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D.* Bandung: Penerbit ALFABETA.
- Syah, M. 2016. PsikologiP Pendidikan. Bandung: PT Remaja Rosdakarya.
- Thobroni, M. 2015. *Belajar & Pembelajaran Teori dan Praktik*. Yogyakarta: Penerbit AR-Ruzz Media.

- Tiro, M. A. 2015. *Dasar-Dasar Statistika Edisi Keempat*. Makassar. Penerbit Andira Publisher Makassar.
- Widyasari. (2011). Efektivitas Media Peraga Visual Dalam Pembelajaran Fisika Model CTL Pada Siswa SMA Negeri 2 Wonosobo Pokok Bahasan Besaran dan Satuan. Retrieved from http://lib.unnes.ac.id/582/1/7301.pdf

LAMPIRANA

A.1 Rencana Pelaksanaan Pembelajaran (RPP)

A.2 Bahan Ajar Peserta Didik

A. 3 Lembar Kegiatan Peserta Didik (LKPD)

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN: FISIKA

MATERI POKOK : USAHA DAN ENERGI

KELAS/SEMESTER : XI/I

WAKTU $: 3 \times 45 \text{ JP}$

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar

- 1.1 Bertambah keimanannya dengan menyadari hubungan keteraturan dan kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakan
- 2.1 Menunjukkan perilaku ilmiah (memilki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi
- 2.2 Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan

Indikator Sikap

- 1.1.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 2.1.1 Menunjukkan sikap rasa jujur, teliti, dan bertanggung jawab dalam melakukan kegiatan pengamatan
- 3.3 Menganalisis konsep energi, usaha, hubungan usaha dan perubahan energi, dan hukum kekekalan energi untuk menyelesaikan permasalahan gerak dalam kejadian sehari-hari

Indikator

- 1. Menjelaskan konsep usaha dalam fisika
- 2. Membedakan contoh termasuk usaha dan bukan usaha menurut fisika dalam kehidupan sehari-hari
- 3. Menghitung persamaan usaha untuk menyelesaikan permasalahan dalam kehidupan sehari-hari
- 4. Mengformulasikan hubungan antara gaya dan perpindahan dalam bentuk grafik
- 4.3 Memecahkan masalah dengan menggunakan metode ilmiah terkait dengan konsep gaya, dan kekekalan energi

Indikator

- 4.3.1 Melakukan kegiatan terkait dengan konsep gaya untuk memecahkan masalah dalam kehidupan sehari-hari
- 4.3.2 Mengumpulkan dan menganalisis data dari demonstrasi tentang usaha
- 4.3.3 Mempresentasikan hasil analisis data dari demonstrasi tentang usaha

C. Tujuan

- 1. Peserta didik mampu menjelaskan defenisi usaha menurut fisika
- 2. Peserta didik mampu menyebutkan contoh yang termasuk usaha dan bukan usaha menurut fisika dalam kehidupan sehari-hari
- 3. Peserta didik dapat menghitung persamaan usaha
- 4. Peserta didik mampu menghitung besar usaha dalam bentuk grafik
- 5. Peserta didik mampu menyimpulkan hubungan gaya dan perpindahan terhadap besar usaha

D. Materi Pembelajaran

- Faktual

Usaha dalam fisika berbeda dengan usaha dalam kehidupan sehri-hari

- Konseptual

Benda dikatakan mengalami usaha, apabila benda tersebut mengalami perpindahan atau bergerak

E. Metode Pembelajaran

• Pendekatan : Saintifik

• Model : Discovery Learning

• Metode : Eksperimen, Demostrasi, Diskusi, dan Tanya jawab

F. Media, Alat, dan Sumber Belajar

• Media : Laptop, LCD, dan LKPD

• Alat :Spidol, Meja,

Sumber belajar: Kanginan, Martin. 2006. Seribu Pena Kelas XI. Jakarta:
 Erlangga

G. Kegiatan Pembelajaran

PERTEMUAN PERTAMA

No	Kegiatan	Kegiatan Guru	Kegiatan siswa	Alokasi
	C		C	waktu
1	Pendahuluan	Guru mengucapkan salam, dan memeriksa kehadiran	Peserta didik membalas salam	10 Menit
		peserta didik	Peserta didik dan Guru berdoa sebelum belajar	
		Memberikan apersepsi	Salah satu peserta didik maju ke depan dan peserta	
		Guru menanyakan kepada peserta didik, apakah kalian	didik yang lainnya mengamati demostrasi yang	
		pernah melakukan usaha? apakah usaha dalam fisika	dilakukan oleh temannya di depan kelas	
		sama dengan usaha dalam kehidupan sehari-hari?	Peserta didik menyimak penjelasan guru	
		Motivasi (Media Visual)		
		Guru menampilkan dua buah gambar yang pertama		
		gambar orang mendorong meja hingga berpindah,		
		yang kedua gambar orang mendorong dinding sampai		
		kelelahan. Kemudian guru menanyakan kepada		
		peserta didik tentang apa yang telah dilakukan orang		
		dalam gambar tersebut. Dan juga siapa diantara		
		mereka yang melakukan usaha?		
		Menyampaikan tujuan pembelajaran		
2	Kegiatan Inti	Mengamati	Mengamati	10 menit
	Fase 1	❖ Menampilkan gambar/vidio berkaitan dengan	 Peserta didik mengamati gambar dan menyimak 	

Stimulation	konsep usaha melalui slide power point (Media	peragaan simulasi yang ditampilkan oleh guru	
	visual)	Peserta didik menemukan permasalahan	
	❖ Membimbing dan mengarahkan peserta didik	berdasarkan hasil peragaan yang telah	
	untuk menemukan permasalahan berdasarkan dari	dilakukan	
	gambar atau vidio yang ditampilkan		
Fase 2	Menanya	Menanya	5 Menit
Problem Statement	❖ Memberikan pertanyaan mengenai demostrasi	 Peserta didik mengajukan pertanyaan mengenai 	
	yang dilakukan	materi yang dipelajari	
Fase 3	Mengumpulkan Informasi	Mengumpulkan Informasi	35 Menit
Data Collecting	❖ Meminta peserta didik membentuk kelompok	❖ Peseta didik duduk bersama dengan teman	
	yang terdiri dari 5-6 perkelompok	kelompoknya masing-masing	
	❖ Guru membagikan LKPD 01 kepada masing-	❖ Peserta didik mengambil LKPD 01 dan	
	masing kelompok dan meminta peserta didik	melakukan kegiatan sesuai dengan panduan	
	untuk mendiskusikan dengan teman	dalam LKPD 01, serta mendiskusikan dengan	
	sekelompoknya	teman kelompoknya	
Fase 4	• Mengasosiasi	• Mengasosiasi	15 Menit
Data Processing	❖ Meminta masing-masing kelompok mendiskusikan	❖ Masing-masing kelompok mendiskusikan hasil	
	hasil kegiatan mereka bersama dengan teman	kegiatan yang telah mereka lakukan	
	kelompoknya	❖ Peserta didik menyimpulkan hasil diskusi	
	❖ Guru membimbing peserta didik dalam melakukan	kelompok	
	diskusi		

	Fase 5	Mengkomunikasikan	Mengkomunikasikan	35 Menit
	Verifikation	❖ Guru meminta perwakilan setiap kelompok	❖ Mempersentasikan hasil diskusinya berupa	
		mempresentasikan hasil diskusi yang telah	kesimpulan berdasarkan hasil analisis secara lisan	
		dilakukannya	maupun tertulis	
		❖ Guru mengecek pemahaman peserta didik dengan	Peserta didik dari kelompok lain menanggapi	
		meminta kelompok lain untuk memberikan	hasil persentase	
		tanggapan kepada kelompok yang sedang presentasi	Masing-masing individu mengerjakan soal yang	
		Guru menyajikan soal yang dikerjakan peserta didik	diberikan oleh guru	
		secara individu untuk mengetahui sejauh mana		
		pemahaman peserta didik selama mengikuti proses		
		pembelajaran		
	Fase 6	❖ Guru bersama peserta didik membuat kesimpulan	Peserta didik membuat sebuah kesimpulan	10 Menit
	Generalization	terkait dengan konsep usaha	berdasarkan dari kegiatan yang telah dilakukan	
3	Penutup	 Guru bersama peserta didik menyimpulkan kegiatan 	* Peserta didik menyimpulkan materi yang telah	15 Menit
		pembelajaran	dipelajari	
		Memberikan pekerjaan rumah kepada peserta didik	❖ Peserta didik mencatat dan mengerjakan soal-soal	
		berupa tugas	yang diberikan	
		 Menutup pelajaran dengan memberi salam 	Membalas salam	

H. PENILAIAN

1. Penilaian Pengetahuan

No	Soal	Kunci jawaban	Skor
1	Jelaskan pengertian usaha dan kapan	- Usaha merupakan hasil perkalian antara gaya dengan	2
	seseorang dikatakan melakukan usaha?	perpindahan	
		- Seseorang dikatakan melakukan usaha ketika	2
		mengalami perpindahan/bergerak	
			4
2	Sebutkan contoh termasuk usaha dan	1. Mendorong mobil	2
	bukan usaha dalam kehidupan sehari-	2. Melempar bola	
	hari!	1. Mendorong mobil	
		2. Melempar bola	4
		3. Mengangkat ember	
		4. Memindahkan lemari	
		1. Mendorong mobil	
		2. Melempar bola	6
		3. Mengangkat ember	
		4. Memindahkan lemari	
		5. Para siswa berusaha keras belajar menghadapi	
		ujian agar lulus	
		6. Para atlit berusaha keras untuk memenangkan	
		pertandingan agar dapat juara	
			6
3	Suatu gaya 10 N bekerja pada sebuah	Jawab:	
	benda yang bermassa 5 kg yang terletak	Dik:	
	pada bidang datar selama 10 sekon. Jika	F = 10 N $m = 5 kg$ $t = 10 s$	3
	benda mula-mula diam dan arah gaya	Dit : a. s =? saat t=10 s	2
	searah dengan perpindahan benda, maka	b. W=? saat t=10 s	
	tentukan:	Penyelesaian:	
	jarak yang ditempuh benda selama 10	$a = \frac{F}{m} = \frac{10}{5} = 2 \text{ m/s}^2$	2
	sekon.	m 5	2

	usaha yang dilakukan oleh gaya pada	a). $s = vot + \frac{1}{2}at^2$	3
	benda selama 10 sekon!		2
		$= 0.10 + \frac{1}{2}.2.10^2 = 100 m$	3
		b).W = F.s	
		= 10.100 = 1000 N	
			17
4	Sebuah balok bermassa 5 kg di atas	Jawab:	
	lantai licin ditarik gaya 4 N membentuk	Dik:	4
	sudut 60° terhadap bidang horizontal.	F = 4 N m = 5 kg	
	Jika balok berpindah sejauh 2 m,	$\theta = 60^{\circ} \text{ s}$ $s = 2 \text{ m}$	1
	tentukan usaha yang dilakukan!	Dit: W=?	2
		Penyelesaian:	3
		$W = F.s\cos\theta$	
		$= 4.2\cos 60^0 = 8.\frac{1}{2} = 4N$	
			10
	Perhatikan grafik gaya terhadap	Jawab:	1
	perpindahan berikut ini!	W= Luas trapezium ABCD	
5	F	$W = \frac{(AB + CD)}{2} X t$	2
	6 D C	$W = \frac{(12+9)}{2}X6$	3
	A B S	$=\frac{126}{2}=63J$	
	0 B 3	2	
	Tentukan besanya usaha hingga detik ke-		
	12!		
	12:		
	1		6

2. Penilaian Sikap

No.	Aspek	3	2	1
1	Kehadiran peserta didik			
2	Keseriusan dalam belajar			

3	Kejujuran		
4	Teliti		
5	Tanggung Jawab		

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Kehadiran peserta didik	Hadir tepat waktu	3
		Hadir telat	2
		Tidak hadir	1
2	Keseriusan dalam	Peserta didik memperhatikan demonstrasi	
	belajar	dengan baik dan memperhatikan apa yang	3
		dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi tetapi masih memperhatikan	2
		apa yang dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi dan tidak memperhatikan apa	1
		yang dibicarakan guru	
3	Kejujuran	Peserta didik mengisi LKPD sesuai	3
		pengamatannya	
		Peserta didik mengisi LKPD dengan	2
		melihat lembar kerja temannya	
		Peserta didik tidak mengisi LKPD	1
4	Teliti	Teliti dalam melakukan pengamatan	3
		Kurang teliti ketika melakukan	2
		pengamatan	
		Tidak teliti ketika melakukan pengamatan	1
5	Tanggung Jawab	Tanggung jawab dalam menyelesaikan	3
		tugas dengan hasil yang baik, berupaya	
		dengan tepat waktu	

	Kurang tanggung jawab, berupaya tepat	2
	waktu dalam menyelesaikan tugas	
	Tidak bertanggung jawab, tidak berupaya	1
	sungguh-sungguh dalam menyelesaikan	
	tugas	

3. Penilaian Keterampilan

Negeri 5 Jeneponto

Ahmad, M., S.Pd NIP. 19700525 199903 1006

No.	Aspek	3	2	1
1	Melakukan kegiatan sesuai prosedur			
2	Kerja sama dengan teman kelompok			
3	Membuat kesimpulan			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Percobaan sesuai	Sesuai dengan langkah kerja	3
	prosedur	Kurang sesuai dengan langkah kerja	2
		Tidak sesuai dengan langkah kerja	1
2	Kerja sama dengan	Kompak	3
	teman kelompok	Kurang kompak	2
		Tidak kompak	1
3	Membuat kesimpulan	Membuat kesimpulan benar	3
		Membuat kesimpulan 1 tidak benar	2
		Membuat kesimpulan salah semua	1

Jeneponto,

Oktober 2017 Peneliti

Wiwik

Guru Pamong

Nurmiati. S.Pd NIP. 198107052006042047

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI POKOK : USAHA DAN ENERGI

KELAS/SEMESTER : XI/I

WAKTU $: 3 \times 45 \text{ JP}$

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar

- 1.1 Bertambah keimanannya dengan menyadari hubungan keteraturan dan kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakan
- 1.2 Menyadari kebesaran Tuhan yang menciptakan dan yang mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurnnya
- 2.1 Menunjukkan perilaku ilmiah (memilki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi
- 2.2 Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan

Indikator Sikap

- 1.1.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 2.1.1 Menunjukkan sikap rasa jujur, teliti, dalam mengumpulkan dan menganalisis data percobaan.
- 2.1.2 Menunjukkan sikap bekerja sama dan bertanggung-jawab dalam melakukan diskusi dan presentasi kelompok.
- 3.3 Menganalisis konsep energi, usaha, hubungan usaha dan perubahan energi, dan hukum kekekalan energi untuk menyelesaikan permasalahan gerak dalam kejadian sehari-hari

Indikator

- 1. Menjelaskan konsep energi
- 2. Membedakan konsep energi kinetik dan energi potensial
- 3. Menghitung persamaan energi kinetik dan energi potesial
- 4. Memformulasikan hubungan antara usaha dan energi kinetik dalam kejadian sehari-hari

- Memformulasikan hubungan antara usaha dan energi potensial dalam kejadian sehari-hari
- 4.2 Memecahkan masalah dengan menggunakan metode ilmiah terkait dengan konsep gaya, dan kekekalan energi

Indikator

- 1. Melakukan percobaan energi potensial untuk memecahkan masalah terkait dengan konsep energi
- 2. Menyajikan dan mengolah hasil percobaan energi potensial kedalam bentuk persamaan
- 3. Mempresentasikan hasil pengamatan ilmiah mengenai konsep energi

C. Tujuan

- 1. Peserta didik dapat menjelaskan pengertian energi
- Peserta didik dapat membedakan antara energi kinetic dengan energi potensial
- 3. Peserta didik dapat menghitung persamaan energy kinetic dan enevgi potensial
- 4. Peserta didik dapat mendeskripsikan hubungan antara usaha dengan energi kinetik
- 5. Peserta didik dapat mendeksripsikan hubungan antara usaha dengan energi potensial
- 6. Peserta didik dapat menyebutkan contoh penerapan energi kinetik dan energi potensial dalam kehidupan sehari-hari
- Melalui percobaan peseta didik dapat mengetahui pengaruh massa dan ketingggian benda terhadap perubaha bentuk
- 8. Peserta didik dapat menunjukan sikap ilmiah dalam melakukan pecobaan
- 9. Melalui percobaan peserta didik dapat menyimpulkan hasil percobaan

D. Materi Pembelajaran

Fakta

- Energi dan usaha saling berkaitan

Konsep

Pengertian energi

- Energi kinetik dan energi potensial
- Hubungan usaha dan energi kinetik
- Hubungan usaha dengan energi potensial
- Pengertian energi mekanik

• Prosedur

- Percobaan energi potensial

E. Metode Pembelajaran

• Pendekatan : Saintifik

Model : Discovery Learning

• Metode : Demostrasi, Eksperimen, diskusi, dan tanya jawab

F. Media, Alat, dan Sumber Belajar

• Media : Laptop, LCD, dan LKPD

• Alat : Spidol, Meja, plastisin, kelereng, stopwatch, papan penyangga, balok, meteran,

• Sumber belajar : Kanginan, Martin. 2006. Seribu Pena Kelas XI. Jakarta: Erlangga

G. Kegiatan Pembelajaran

No	Kegiatan	Kegiatan Guru	Kegiatan siswa	Alokasi
110	negiatan	ixegiatan Guru	ixegiatan siswa	waktu
1	Pendahuluan	Guru mengucapkan salam dan memeriksa	Peserta didik membalas salam	10 menit
		kehadiran peserta didik, kebersihan, dan	Peserta didik dan Guru berdoa sebelum	
		kerapihan kelas	belajar	
		Memberikan apersepsi	Peserta didik menyimak penjelasan guru	
		- Pernahkah kalian bermain tarik tambang?		
		tentunya pernah, apakah kalian sudah		
		melakukan usaha ketika kalian tetap tidak		
		bergerak padahal kalian sudah melakukan		
		usaha untuk menarik tarik tambang? Apakah		
		kalian mengeluarkan energi untuk menarik		
		tarik tambang tersebut?		
		- Sebuah spidol yang di pegang di ujung jari,		
		Kemudian spidol tersebut di jatuhkan, apa		
		yang menyebabkan spidol tersebut bisa jatuh		
		ke tanah? (Menanya)		
		Memberikan motivasi		
		Untuk beraktivitas kalian memerlukan energi,		

		dan kalian peroleh dari makanan yang kalian santap setiap hari, begitu juga dengan mesin, mesin tersebut juga memerlukan energi untuk beroperasi, energi mesin tersebut diperoleh dari bahan bakarnya. Lalu apa yang dimaksud dengan energi?		
	TZ T .:	Menyampaikan tujuan pembelajaran		25.14
2	Fase I (Stimulation/ memberikan rangsangan)	 Mengamati Menampilkan gambar/vidio berkaitan dengan konsep energi melalui slide power point (Media visual) Menjelaskan materi energi kinetik, energi potensial, dan energi mekanik, dan hubungannya dengan usaha Menilai keterampilan peserta didik mengamati 	 Mengamati Peserta didik mengamati demostrasi yang ditampilkan oleh guru Peserta didik memperhatikan penjelasan materi yang disampaikan oleh guru 	25 Menit
	Fase 2 Identifikasi masalah	 Menanya ❖ Meminta peserta didik mengajukan pertanyaan tentang faktor yang mempengaruhi besar energi kinetik, energi potensial dan bagaimana 	Menanya Peserta didik berdiskusi untuk membuat/mengajukan pertanyaan mengenai materi yang dipelajari	5 Menit

Fase 3	hubungannya dengan usaha		
Data	Mengumpulkan Informasi	Mengumpulkan Informasi	30 Menit
Collection	Meminta peserta didik duduk bersama	❖ Peserta didik duduk bersama dengan	
(Mengumpulk	dengan teman kelompoknya masing-	teman kelompoknya yang sudah	
an data)	masing	dibentuk	
	Guru membagikan LKPD 02 kepada	❖ Peserta didik membaca dan	
	masing-masing kelompok, dan Meminta	memahami panduan eksperimen pada	
	peserta didik melakukan percobaan	LKPD 02	
	Menilai sikap peserta didik dalam kerja	❖ Peserta didik melakukan percobaan	
	kelompok	sesuai dengan panduan yang ada di	
		LKPD 02	
Fase 4	Mengasosiasi	Mengasosiasi	15 Menit
Data	❖ Guru membimbing peserta didik dalam	Masing-masing kelompok berdiskusi	
Processing	melakukan percobaan serta dalam	mengenai penyajian dan pengolahan	
(Mengolah	mengumpulkan data	data berdasarkan hasil percobaan	
data)		❖ Peserta didik menarik kesimpulan dari	
		percobaan yang dipandul dalam LKPD	
		02	
Fase 5	Mengkomunikasikan	Mengkomunikasikan	25 Menit
Verification	❖ Guru meminta agar masing-masing	❖ masing-masing kelompok	
(Menguji	kelompok mempresentasikan hasil diskusi di	mempersentasikan hasil diskusinya	

	Hasil)	depan kelas, dan kelompok yang lain	berupa kesimpulan berdasarkan hasil	
		menanggapi dengan mengajukan pertanyaan	analisis secara lisan maupun tertulis	
		❖ Guru memberikan beberapa soal mengenai	❖ Peserta didik dari kelompok lain	
		energi potensial dan energi kinetik untuk	menanggapi hasil persentasi berupa	
		dikerjakan peserta didik	pertanyaan	
		❖ Guru mengoreksi jawaban peserta didik	❖ Peserta didik mengerjakan soal yang	
		apakah sudah benar atau belum. Jika masih	diberikan oleh guru	
		ada peserta didik yang belum menjawab		
		dengan benar maka guru dapat langsung		
		memberikan bimbingan		
	Fase 6	Guru membimbing dan melakukan tanya	❖ Peserta didik membuat kesimpulan	10 Menit
	Generalization	jawab pada peserta didik untuk	tentang materi yang telah dipelajari	
	(Menyimpulk	menyimpulkan materi yang dipelajari peserta	peserta didik	
	an)	didik		
3	Penutup	❖ Guru bersama peserta didik mereview hasil	❖ Peserta didik dan guru mereview hasil	15 Menit
		kegiatan pembelajaran yang telah	kegiatan pembelajaran.	
		dilaksankan	❖ Peserta didik mencatat tugas rumah	
		Memberikan tugas rumah berupa latihan soal	yang diberikan guru	
		❖ Guru menutup pembelajaran dengan	❖ Membalas salam	
		memberi salam		

H. Penilaian

1. Penilaian Pengetahuan

No	Soal	Kunci jawaban	Skor
1	Jelaskan perbedaan antara energi	- Energi kinetic dimiliki karena geraknya sedangkan	2
	potensial dan energi kinetic!	energi potensial karena kedudukanya	
		- Energi kinetic dipengaruhi oleh kecepatan sedangkan	3
		energi potensial dipengaruhi oleh ketinggian dan	
		percepatan gravitasi bumi	
-			5
2	Seekor burung sedang melayang	Jawab:	
	terbang pada ketinggian 10 m diatas	Dik: $m = 2 \text{ kg}$ $v = 10 \text{ m/s}$ $h = 10 \text{ m}$	3
		Dit: a) $E_K =$?	
	tanah dengan kecepatan konstan	b) $E_P =$?	3
	sebesar 10 m/s. Jika massa burung	c) $E_M =$?	
	adalah 2 kg, tentukan:	$a) E_K = \frac{1}{2} m v^2$	2
	a. Energi kinetik burung	$= \frac{1}{2} \cdot 2 \cdot 10^2 = 100 m/s$	3
	b. Energi potensial burung	b) $E_P = mgh$	2
		= 2.10.10 = 200 J	2
	c. Energi mekanik burung	$c) E_K = E_K + E_P$	2
		= 100 + 200 = 300 J	2
			19
3	Sebuah bola dengan massa 0,5 kg	Jawab:	
	dilemparkan vertikal ke atas dengan	Dik: $v = 20 \text{ m/s}$ $m = 0.5 \text{ kg}$	3
	kecepatan 20 m/s. Jika percepatan	$g = 10 \text{ m/s}^2$ Dit:	
	gravitasi 10 m/s ² , tentukan:	a. $E_{Pmax} =$?	2
	a. Energi potensial saat mencapai	b. ΔE_P =? h = 5 m Penyelesaian:	
	titik tertinggi, dan	,,,2	
	b. Perubahan energi potensial saat	$a) h_{max} = \frac{b}{2g}$	2

	bola berada pada ketinggian 5 m	$=\frac{20^2}{2.10}=\frac{400}{20}=20 m$, sehingga	
			3
		$E_P = mgh = 0.5.10.20 = 100 joule$	2
		$b) E_{P2} = mgh_2$	2
		= 0,5 . 10 . 5 = 25 <i>joule</i>	
		sehingga, $\Delta E_P = E_{P2} - E_{P1} = 25 - 100 = -75$ joule	3
			19
4	Sebuah bola sepak bermassa 150 gram	Jawab:	
	ditendang oleh Ronaldo dan bola	Dik: m = 150 gram=0,15 kg	2
	tersebut bergerak lurus menuju	v = 30 m/s	
	gawang dengan laju 30 m/s.	Dit: a) E _K :?	2
	Hitunglah:	b) W _{total} ::	
	a. Energi kinetik bola tersebut	Penyelesaian:	
	b. Berapa usaha yang dilaukan	a) $E_K = \frac{1}{2} m v^2$	2
	Ronaldo pada bola untuk mencapai	4	3
	laju ini, jika bola mulai bergerak	$= \frac{1}{2}.0,15.30^2 = 67,5 joule$	
	dari keadaan diam?	b) $W = E_{K2} - E_{K1}$	2
		= 67,5 - 0 = 67,5 joule	2
			13
5	Sebuah balok yang massanya 6 kg	Jawab:	
	dipindahkan dari tempat setinggi 100	Dik: $m = 6 \text{ kg}$ $h_2 = 4 \text{ m}$	4
	cm ke tempat yang tingginya 4 m. Jika	$h_1 = 100 \text{ cm} = 1 \text{ m}$ $g = 10 \text{ m/s}^2$	
	percepatan gravitasi bumi di tempat	Dit: a) W:?	1
	itu 10 m/s², berapa usaha yang	Penyelesaian:	
	dilakukan pada balok tersebut?	$W = E_{P2} - E_{P1}$	2
		$= mgh_2 - mgh_1$	2
		$W = mg (h_2 - h_1)$ $W = 5 kg \times 10 \frac{m}{s^2} (4 - 1) = 150 joule$	1
		Jadi, usaha yang dilakukan pada balok sebesar 150 joule	3
			13

2. Penilai sikap

No.	Aspek	3	2	1
1	Kehadiran peserta didik			
2	Keseriusan dalam belajar			
3	Kejujuran			
4	Teliti			
5	Tanggung Jawab			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Kehadiran peserta didik	Hadir tepat waktu	3
		Hadir telat	2
		Tidak hadir	1
2	Keseriusan dalam	Peserta didik memperhatikan demonstrasi	
	belajar	dengan baik dan memperhatikan apa yang	3
		dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi tetapi masih memperhatikan	2
		apa yang dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi dan tidak memperhatikan apa	
		yang dibicarakan guru	
3	Kejujuran	Peserta didik mengisi LKPD sesuai	3
		pengamatannya	
		Peserta didik mengisi LKPD dengan	2
		melihat lembar kerja temannya	
		Peserta didik tidak mengisi LKPD	1
4	Teliti	Teliti dalam melakukan pengamatan	3
		Kurang teliti ketika melakukan	2
		pengamatan	
		Tidak teliti ketika melakukan pengamatan	1
5	Tanggung Jawab	Tanggung jawab dalam menyelesaikan	3

	tugas dengan hasil yang baik, berupaya	
	dengan tepat waktu	
	Kurang tanggung jawab, berupaya tepat	2
	waktu dalam menyelesaikan tugas	
	Tidak bertanggung jawab, tidak berupaya	1
	sungguh-sungguh dalam menyelesaikan	
	tugas	

3. Penilaian Keterampilan

No.	Aspek Yang diamati	3	2	1
1	Menyiapkan alat percobaan			
2	Melakukan percobaan sesuai prosedur			
3	Kerja sama kelompok dalam melakukan percobaan dan mengerjakan LKPD			
4	Mengumpulkan data			
5	Mengolah data berdasarkan hasil pengamatan			
6	Presentasi hasil kegiatan			
7	Membuat kesimpulan			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Menyiapkan alat	Menyiapkan alat dengan lengkap	3
	percobaan	Cukup lengkap	2
		Kurang lengkap	1
2	Melakukan percobaan	Peserta didik melakukan dengan tepat	3
	sesuai prosedur	Peserta didik melakukan percobaan tetapi kurang tepat	2
		Peserta didik tidak melakukan percobaan	1
3	Kerja sama kelompok	Aktif	3
	dalam melakukan	Kurang aktif	2
	percobaan dan	Tidak aktif	1

	mengerjakan LKPD		
4	Mengumpulkan data	Mengumpulkan data sesuai dengan prosedur percobaan	3
		Mengumpulkan data dengan asal-asalan	2
		Mengumpulkan data tidak sesuai	1
5	Mengolah data	Tanggung jawab dalam menyelesaikan	3
	berdasarkan hasil	tugas dengan hasil yang baik, berupaya	
	pengamatan	dengan tepat waktu	
		Kurang tanggung jawab, berupaya tepat	
		waktu dalam menyelesaikan tugas	
		Tidak bertanggung jawab, tidak berupaya	1
		sungguh-sungguh dalam menyelesaikan	
		tugas	
6	Presentasi hasil	Aktif menjawab pertanyaan	3
	kegiatan	Aktif membantu	2
		Tidak aktif	1
7	Membuat kesimpulan	Membuat kesimpulan dengan lengkap	3
		Membuat kesimpulan kurang lengkap	2

Mengerahwi Kepala SMA Negeri 5 Jeneponto

Ahmad M. S.Pd NIP. 19700525 199903 1006

Jeneponto,

Oktober 2017 Peneliti

Wiwik

Guru Pamong

Nurmiati. S.Pd NIP. 198107052006042047

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI POKOK : USAHA DAN ENERGI

KELAS/SEMESTER : XI/I

WAKTU : $3 \times 45 \text{ JP}$

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metode sesuai kaidah keilmuan

B. Kompetensi Dasar

- 1.1 Bertambah keimanannya dengan menyadari hubungan keteraturan dan kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakan
- 1.2 Menyadari kebesaran Tuhan yang menciptakan dan yang mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurnnya
- 2.1 Menunjukkan perilaku ilmiah (memilki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi
- 2.2 Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan

Indikator Sikap

- 1.1.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 1.1.2 Menunjukkan sikap rasa jujur, teliti, dalam mengumpulkan dan menganalisis percobaan yang dilakukan.
- 1.1.3 Menunjukkan sikap bekerja sama dan bertanggung-jawab dalam melakukan diskusi dan presentasi kelompok.
- 3.3 Menganalisis konsep energi, usaha, hubungan usaha dan perubahan energi, dan hukum kekekalan energi untuk menyelesaikan permasalahan gerak dalam kejadian sehari-hari

Indikator

- 1. Menjelaskan konsep hukum kekekalan energi mekanik
- 2. Menghitung rumus hukum kekekalan energi mekanik
- 3. Memformulasikan bentuk hukum kekekalan energi mekanik pada berbagai gerak
- 4. Menunjukan penerapan hukum kekekalan energi mekanik untuk memecahkan masalah dalam kehidupan sehari-hari

4.2 Memecahkan masalah dengan menggunakan metode ilmiah terkait dengan konsep gaya, dan kekekalan energi

Indikator

- 1. Melakukan percobaan hukum kekekalan energi mekanik
- 2. Menyajikan dan mengolah data hasil percobaan kedalam bentuk persamaan
- 3. Mempresentasikan hasil percobaan berdasarkan dari hasil pengamatan

C. Tujuan

- 1. Peserta didik dapat menjelaskan konsep hukum kekekalan energi mekanik
- 2. Peserta didik dapat menghitung kekekalan energi mekanik
- 3. Peserta didik dapat menjelaskan hukum kekekalan energi mekanik pada berbagai bentuk gerak
- 4. Peserta didik dapat mengolah dan menyajikan data percobaan
- Peserta didik dapat mengkomunikasikan hasil percobaan kedalam bentuk persamaan
- Peserta didik dapat menerapkan hukum kekekalan energi mekanik dalam kehidupan sehari-hari
- 7. Peserta didik menunjukan sikap jujur dan teliti dalam melakukan pecobaan
- 8. Peserta didik menunjukan rasa tanggung jawab dalam berkomunikasi dan diskusi kelompok

D. Materi Pembelajaran

Fakta

- Hukum kekekalan energi mekanik dan usaha saling berkaitan

Konsep

- Hukum kekekalan energi mekanik

• Prosedur

- Percobaan hukum kekekalan energi

E. Metode Pembelajaran

Pendekatan : Saintifik

• Model : Discovery Learning

Metode : Eksperimen, Diskusi, dan Demostrasi

F. Media, Alat, dan Sumber Belajar

• Media : Laptop, LCD, dan LKPD

 Alat : Spidol, mobil-mobilan, stopwatch, papan penyangga, papan peluncur, balok, dan meteran

• Sumber belajar : Kanginan, Martin. 2006. Seribu Pena Kelas XI. Jakarta: Erlangga

G. KEGIATAN PEMBELAJARAN

No	Kegiatan	Kegiatan Guru	Kegiatan siswa	Alokasi waktu
1	Pendahuluan	 Guru mengucapkan salam, dan memeriksa kehadiran peserta didik Memberikan apersepsi dengan menanyaka kembali pengetahuan peserta didik tentang pelajaran minggu lalu berupa "Apa itu energi mekanik?? Memberikan motivasi (Media Visual) Guru menampilkan sebuah gambar roller coaster dan menanyakan kepada peserta didik tentang bentuk lintasan serta alasan kenapa roller coaster tersebut tidak terjatuh ketika mengitari lintasannya. Menyampaikan tujuan pembelajaran 	 Peserta didik membalas salam Peserta didik dan Guru berdoa sebelum belajar Peserta didik mengamati dan menyimak penjelasan guru 	15 menit
	Kegiatan Inti	Mengamati	Mengamati	25 Menit
	Fase 1	 Menampilkan power point tentang materi hukum 	Peserta didik mengamati dan	
	Stimulation	kekekalan energi mekanik	menyimak penjelasan guru hukum	
	(Memberikan	Menilai keterampilan peserta didik mengamati	kekekalan energi mekanik	
	rangsangan)			

2	Fase 2	• Menanya	• Menanya	5 menit
	Identifikasi	❖ Berdasarkan dari penjelasan guru meminta	Peserta didik mengajukan	
	Masalah	peserta didik mengembangkan rasa ingin	pertanyaan terkait materi yang	
		tahunya, sehingga peserta didik bertanya terkait	dipelajari	
		materi		
	Fase 3	Mengumpulkan Informasi	Mengumpulkan Informasi	35 Menit
	Data	❖ Meminta peserta didik duduk bersama dengan	Peserta didik duduk bersama	
	Collection	teman kelompoknya masing-masing	dengan teman kelompoknya yang	
	(Mengumpul	❖ Guru membagikan LKPD 03 kepada masing-	sudah dibentuk	
	kanData)	masing kelompok	Peserta didik melakukan	
		❖ Guru meminta peserta didik melakukan	percobaan sesuai panduan dalam	
		percobaan mengenai hukum kekekalan energi	LKPD 03	
		mekanik		
		❖ Guru membimbing peserta didik dalam		
		melakukan percobaan		
		Menilai sikap peserta didik dalam kerja		
		kelompok		
		Mengasosiasi	• Mengasosiasi	20 Menit
	Fase 4	Masing-masing kelompok mendiskusikan hasil	Peserta didik melakukan percobaan	
	Data	percobaan yang mereka lakukan bersama dengan	sesuai dengan langkah kerja yang	
	Processing	teman anggota kelompoknya	ada di LKPD 03	
	(Mengolah	❖ Guru membimbing/ menilai kemampuan peserta	❖ Masing-masing kelompok	
	Data)	didik mengolah data dan merumuskan	mendiskusikan hasil diskusinya	
		kesimpulan		10.35
	T	Mengkomunikasikan	Mengkomunikasikan	40 Menit
	Fase 5	❖ Guru meminta agar masing-masing kelompok	Peserta didik mempresentasikan	
	Verification	mempresentasikan hasil diskusi di depan kelas,	hasil diskusi berupa kesimpulan	

	Fase 6 Generalizatio n (Menyimpulk an	dan kelompok yang lain menanggapi dengan mengajukan pertanyaan Guru menilai kemampuan peserta didik menyaji dan bernalar dan kemampuan berkomunikasi lisan Guru menjelaskan kembali materi yang dipelajari, dan memberi soal untuk mengetahui sejauh mana pemahaman peserta didik mengenai materi yang dijelaskan Guru bersama peserta didik mereview hasil kegiatan yang telah dilakukan dengan melalui tanya jawab	menanggapi berupa pertanyaan atau pendapat Peserta didik menyimak penjelasan guru dan mengerjakan soal yang diberikan oleh guru Peserta didik dan guru mereview hasil kegiatan pembelajaran.	5 Menit
3	Penutup	 Guru bersama peserta didik menyimpulkan kegiatan pembelajaran Memberikan pekerjaan rumah kepada peserta didik berupa tugas menutup pelajaran dengan memberi salam 	 Peserta didik menyimpulkan materi yang telah dipelajari Peserta didik mencatat dan mengerjakan soal-soal yang diberikan Membalas salam 	15 Menit

H. Penilaian

1. Penilaian Pengetahuan

No	Soal	Kunci jawaban	Skor
1	Bagaimana bunyi hukum kekekalan	- Bunyi hukum kekekalan energy mekanik bahwa energy	2
	energy mekanik?	tidak dapat diciptakan maupun dimusnahkan.	
		- Bunyi hukum kekekalan energy mekanik bahwa energy	4
		tidak dapat diciptakan maupun dimusnahkan namun	
		dapat diubah dari satu bentuk ke bentuk lainnya	
			4
2	Sebuah bola bermassa 0,2 kg	Jawab:	
	dilemparkan ke atas dengan kecepatan	Dik: $m = 0.2 \text{ kg}$ $h_0 = 1.5 \text{ m}$ $v_0 = 10 \text{ m/s}$	5
	awal 10 m/s dari ketinggian 1,5 m.	$v_t = 5 \text{ m}$ $g = 10 \text{ m/s}$	
	Percepatan gravitasi g = 10 m/s.	Dit: h _t =?	1
	Berapakah ketinggian bola pada saat	Jawab:	
	kecepatannya 5 m/s?	$E_{M} = Tetap$	1
		$E_M = E_K + E_P$	2
		$\frac{1}{2}mv_t^2 + mgh_t = \frac{1}{2}mv_0^2 + mgh_0$	2
		$\frac{1}{2} \cdot 0.2.5^2 + 0.2.10. h_t = \frac{1}{2} \cdot 0.2.10^2 + 0.2.10.1.5$	2
		$2.5 + 2h_t = 10 + 3$	2
		$2.5 + 2h_t = 13$	
		$2h_t = 10,5$	
		$h_t = 5,25 m$	1
			16
3	Sebuah bola dengan massa 1 kg	Jawab:	
	dilempar vertikal ke atas dengan	Dik: $m = 1 \text{ kg}$ $v_0 = 20 \text{ m/s}$	4
	kecepatan awal 20 m/s. Bila g = 10	$g = 10 \text{ m/s}^2$ h 10 m	
	m/s ² , maka hitunglah energy kinetik	Dit: $E_K = \dots$?	1
	saat benda mencapai ketinggian 10 m?	Penyelesaian:	2
		$EM_A = EM_B$	
		$\frac{1}{2}mv_t^2 + mgh_t = \frac{1}{2}mv_0^2 + mgh_0$	2

		$\frac{1}{2}1.20^2 + 1.10.0 = \frac{1}{2}mv_0^2 + 1.10.10$	3
		$200 + 0 = E_{KO} + 100$	
		$E_{KO}=100\mathrm{J}$	
			12
4	Sebuah benda jatuh dari ketinggian 6	Jawab:	
	meter dari atas tanah. Berapakah	Dik: $m = 0.2 \text{ kg}$ $h_0 = 6 \text{ m}$ $h_t = 1 \text{ m}$	4
	kecepatan benda tersebut pada saat	g = 10 m/s	
	mencapai ketinggian 1 meter ari tanah,	Dit: $v_t = \dots$?	1
	jika percepatan gravitasi bumi 10	Jawab:	2
	m/s^2 ?	$E_{K0} + E_{P0} = E_{Kt} + E_{Pt}$	
		$\frac{1}{2}mv_0^2 + mgh_0 = \frac{1}{2}mv_t^2 + mgh_t$	2
		$\frac{1}{2}v_0^2 + gh_0 = \frac{1}{2}v_t^2 + gh_t,$	2
		benda jatuh bebas, berarti $v_0 = 0$	
		$gh_0 = \frac{1}{2}v_t^2 + gh_t,$	
		$10.6 = \frac{1}{2}v_t^2 + 10.1,$	
		$60 = \frac{1}{2}v_t^2 + 10$	3
		$50 = \frac{1}{2}v_t^2$	
		$v_t^2 = 100$	1
		$v_t = \sqrt{100} = 10 \ m/s$	
			17
5	Sebuah benda jatuh bebas dari posisi	Jawab:	
	A seperti pada gambar berikut.	Dik:	
	↑ ^{AO}	$h_{A} = h$ $h_{B} = 1/4h$ $v_{0}=0$	3
	h B ↑ 1/4	$Dit: E_{PB}: E_{KB} \dots ?$	2
ļ		Penyelesaian:	
	Hitunglah perbandingan energy	a) $E_{PB} = mgh = m.g.\frac{1}{4}h = \frac{1}{4}mgh$	4
	potensial dan energy kinetic benda	b) Tentukan energi kinetik di titik $B(E_{KB})$	
1 '	ketika sampai diposisi B?		2

$mgh_A + \frac{1}{2}mv_A^2 = mgh_B + E_{KB}$	2
$m. g. h + \frac{1}{2}m. 0 = m. g. \frac{1}{4} h + E_{KB}$	2
$E_{KB} = m. g. h - \frac{1}{4} m. g. h$	2
$= \frac{3}{4} m. g. h$	2
$perbanding an \ E_{PB} dengan \ E_{KB}$	
E_{PB} : E_{KB}	
$= \frac{1}{4}m. g. h : \frac{3}{4}m. g. h = 1:3$	2
$\frac{1}{4}$ $\frac{1}$	2
· · · · · · · · · · · · · · · · · · ·	23

2. Penilaian Sikap

No.	Aspek	3	2	1
1	Kehadiran peserta didik			
2	Keseriusan dalam belajar			
3	Kejujuran			
4	Teliti			
5	Tanggung Jawab			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Kehadiran peserta didik	Hadir tepat waktu	3
		Hadir telat	2
		Tidak hadir	1
2	Keseriusan dalam	Peserta didik memperhatikan demonstrasi	
	belajar	dengan baik dan memperhatikan apa yang	3
		dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi tetapi masih memperhatikan	2
		apa yang dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi dan tidak memperhatikan apa	1
		yang dibicarakan guru	
3	Kejujuran	Peserta didik mengisi LKPD sesuai	3
		pengamatannya	
		Peserta didik mengisi LKPD dengan	2
		melihat lembar kerja temannya	
		Peserta didik tidak mengisi LKPD	1

4	Teliti	Teliti dalam melakukan pengamatan	3
		Kurang teliti ketika melakukan	2
		pengamatan	
		Tidak teliti ketika melakukan pengamatan	1
5	Tanggung Jawab	Tanggung jawab dalam menyelesaikan	3
		tugas dengan hasil yang baik, berupaya	
		dengan tepat waktu	
		Kurang tanggung jawab, berupaya tepat	
		waktu dalam menyelesaikan tugas	
		Tidak bertanggung jawab, tidak berupaya	
		sungguh-sungguh dalam menyelesaikan	
		tugas	

3. Penilaian Keterampilan

No.	Aspek	3	2	1
1	Melakukan kegiatan sesuai prosedur			
2	Kerja sama dengan teman kelompok			
3	Mengambil data dalam pratikum			
4	Menyajikan hasil pengamatan data			
5	Mengolah data berdasarkan hasil pengamatan			
6	Membuat kesimpulan			

Jeneponto,

Oktober 2017 Peneliti

Wiwik

Guru Pamong

Nurmiati. S.Pd NIP. 198107052006042047

Negeri 5 Jeneponto

NIP. 19700525 199903 1006

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI POKOK : USAHA DAN ENERGI

KELAS/SEMESTER : XI/I

WAKTU : $3 \times 45 \text{ JP}$

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar

- 1.1 Bertambah keimanannya dengan menyadari hubungan keteraturan dan kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakan
- 1.2 Menyadari kebesaran Tuhan yang menciptakan dan yang mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurnnya
- 2.1 Menunjukkan perilaku ilmiah (memilki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi
- 2.2 Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan

Indikator Sikap

- 1.1.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 2.1.1 Menunjukkan sikap rasa jujur, teliti, dalam mengumpulkan dan menganalisis informasi tentang konsep usaha.
- 2.1.2 Menunjukkan sikap bekerja sama dan bertanggung-jawab dalam melakukan diskusi dan presentasi kelompok.
- 3.3 Menganalisis konsep energi, usaha, hubungan usaha dan perubahan energi, dan hukum kekekalan energi untuk menyelesaikan permasalahan gerak dalam kejadian sehari-hari

Indikator

- 1. Menjelaskan konsep daya
- 2. Menghitung persamaan daya kaitannya dengan usaha dan energi
- 4.2 Memecahkan masalah dengan menggunakan metode ilmiah terkait dengan konsep gaya, dan kekekalan energi

Indikator

1. Melakukan diskusi kelompok berkaitan dengan konsep daya

- 2. Menyajikan dan mengolah hasil diskusi
- 3. Mempresentasikan hasil diskusi berdasarkan dari hasil pengamatan

C. Tujuan

- 1. Peserta didik dapat menjelaskan pengertian daya
- Peserta didik dapat menghitung persamaan daya kaitannya dengan usaha dan energi
- 3. Peserta didik dapat menerapkan konsep daya dalam kehidupan sehari-hari

D. Materi Pembelajaran

Penerapan daya dalam kehidupan sehari-hari

E. Metode Pembelajaran

• Pendekatan : Saintifik

• Model : Discovery Learning

• Metode : Eksperimen, Diskusi, Demostrasi, dan tanya jawab

F. Media, Alat, dan Sumber Belajar

• Media : Laptop, LCD, dan LKPD

• Alat :Spidol

Sumber belajar: Kanginan, Martin. 2006. Seribu Pena Kelas XI. Jakarta:
 Erlangga

G. KEGIATAN PEMBELAJARAN

No	Kegiatan	Kegiatan Kegiatan Guru Kegiatan siswa		Alokasi
	9			waktu
1	Pendahuluan	Guru mengucapkan salam, dan memeriksa	Peserta didik membalas salam	15 menit
		kehadiran siswa	Peserta didik dan Guru berdoa sebelum	
		Memberikan apersepsi dan motivasi	belajar	
		Apakah artinya lampu dengan daya 50 watt?	Peserta didik menyimak penjelasan guru	
		Menyampaikan tujuan pembelajaran		
2	Kegiatan Inti	Mengamati	Mengamati	25 menit
	Fase 1	Menyajikan materi menggunakan power	Peserta didik menyimak penjelasan	
	Stimulation	point (Media Visual)	guru	
		Menanya	Menanya	5 menit
	Fase 2	❖ Guru memberi kesempatan peserta didik	 Peserta didik mengajukan pertanyaan 	
	Identifikasi	bertanya bagaimana cara mendapatkan	cara mendapatkan persamaan daya	
	Masalah	persamaan daya		
	Fase 3	Mengumpulkan Informasi	Mengumpulkan Informasi	25 Menit
	Data Collection	❖ Meminta peserta didik duduk bersama	❖ Peserta didik duduk bersama dengan	
	(Mengumpulkan	dengan teman kelompoknya masing-masing	teman kelompoknya masing-masing	
	Data)	❖ Guru membagikan LKPD 04 kepada masing-	❖ Peserta didik mengambil LKPD 04	
		masing kelompok	yang dibagikan guru	

	❖ Guru meminta peserta didik untuk membaca	❖ Peserta didik mencari pemecahan	
	buku atau apapun yang dapat digunakan	masalah pada LKPD 04	
	peserta didik untuk mempermudah dalam		
	menyelesaikan permasalahan dalam LKPD		
	04		
	Menilai sikap peserta didik dalam kerja		
	kelompok		
Fase 4	• Mengasosiasi	Mengasosiasi	15 Menit
Data Processing	❖ Masing-masing kelompok mendiskusikan	❖ Secara kelompok peserta didik	
(Mengolah data)	hasil yang telah mereka peroleh bersama	melakukan diskusi tentang hubungan	
	dengan teman anggota kelompoknya	antara daya, kecepatan, dan usaha	
Fase 5	• Mengkomunikasikan	Mengkomunikasikan	30 Menit
Verifikation	❖ Guru meminta agar masing-masing	Peserta didik menyampaikan hasil	
	kelompok mempresentasikan hasil diskusi di	diskusi mereka, dan kelompok lain	
	depan kelas, dan kelompok yang lain	menanggapinya	
	memberikan tanggapan berupa pertanyaan	 Peserta didik mengerjakan soal yang 	
	atau pendapat	diberikan oleh guru	
	❖ Guru menilai kemampuan peserta didik		
	menyaji dan bernalar dan kemampuan		
	berkomunikasi lisan		
	❖ Guru memberikan soal untuk mengetahui		

	Fase 6	sejauh mana pemahaman peserta didik		
	Generalization	mengenai materi yang dijelaskan		
	(Menyimpulkan)	❖ Guru meminta peserta didik menyimpulkan		
		kegiatan yang dilakukan		
3	Penutup	❖ Guru bersama peserta didik mereview hasil	❖ Peserta didik dan guru mereview hasil	20 Menit
		kegiatan yang telah dilakukan	kegiatan yang telah dilakukan.	
		❖ Memberi salam	Membalas salam	

H. Penilaian

1. Penilaian Pengetahuan

No	Soal	Kunci jawaban	Skor
1	Romi mendorong kotak bermassa 3 kg	Jawab:	
	dengan gaya 15 N. Tentukan daya	Dik: $m = 3 \text{ kg}$ $F = 15 \text{ N}$ $t = 2 \text{ s}$ $s = 2.5 \text{ m}$	4
	yang dilakukan anak tersebut jika ia	Dit: P =?	1
	mampu mendorong kotak sejauh 2,5	Penyelesaian:	
	m dalam waktu 2 sekon!	$P = \frac{W}{t} = \frac{F.s}{t}$	2
		$P = \frac{15. \ 2.5}{2} = 18,75 \ watt$	3
			10
	Salarah 1:fr	Tanada	10
2	Sebuah lift mampu mengangkut 5	Jawab:	4
	penumpang massa tiap penumpang 60	Dik: massa total beban = $5x 60 + 900 = 1200 \text{ kg}$	4
	kg setinggi 10 m dalam waktu 15	$\Delta h = 10 \text{ m}$ $g = 10 \text{ m/s}^2$ $t = 15 \text{ s}$	
	sekon. Jika massa lift 900 kg dan g 10	Dit:P =?	1
	m/s ² , berapakah daya lift itu?	Jawa:	
		$P = \frac{W}{t} = \frac{\Delta E_P}{t} = \frac{mgh}{t}$	4
		$P = \frac{1200.10.10}{15} = 8000 \ watt$	3
			12
3	Air terjun setinggi 10 m dengan debit	Jawab:	
	50 m ³ /s dimanfaatkan untuk	Dik: $v = 50 \text{ m}^3/\text{s}$ $t = 1 \text{ s}$ $\eta = 25 \%$	5
	memutarkan generator listrik mikro.	$g = 10 \text{ m/s}^2$ $h = 10 \text{ m}$	
	Jika 25% energi air berubah menjadi	Dit: P =?	1
	energi listrik dan $g = 10 \text{ m/s}^2$, maka	Penyelesaian:	2
	berapakah daya keluaran generator	$\eta = \frac{W}{E_B}$	2
	listrik?	_r	
		$W = \eta. E_P = 25 \% (\rho. V). g. h$	
		Jadi daya keluaran generator sebesar:	3
		$P = \frac{W}{t}$	
		$P = \frac{25 \% (\rho.V).gh}{t}$	

$P = \frac{0.25.1000.\ 50.10.10}{1} = 1,25 \ x \ 10^6 W = 1,25 \ MW$	3
	16

2. Penilaian Sikap

No.	Aspek	3	2	1
1	Kehadiran peserta didik			
2	Keseriusan dalam belajar			
3	Kejujuran			
4	Teliti			
5	Tanggung Jawab			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Kehadiran peserta didik	Hadir tepat waktu	3
		Hadir telat	2
		Tidak hadir	1
2	Keseriusan dalam	Peserta didik memperhatikan demonstrasi	
	belajar	dengan baik dan memperhatikan apa yang	
		dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi tetapi masih memperhatikan	2
		apa yang dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi dan tidak memperhatikan apa	
		yang dibicarakan guru	
3	Kejujuran	Peserta didik mengisi LKPD sesuai	3

		pengamatannya	
		Peserta didik mengisi LKPD dengan	2
		melihat lembar kerja temannya	
		Peserta didik tidak mengisi LKPD	1
5	Teliti	Teliti dalam melakukan pengamatan	3
		Kurang teliti ketika melakukan	2
		pengamatan	
		Tidak teliti ketika melakukan pengamatan	1
6	Tanggung Jawab	Tanggung jawab dalam menyelesaikan	3
		tugas dengan hasil yang baik, berupaya	
		dengan tepat waktu	
		Kurang tanggung jawab, berupaya tepat	2
		waktu dalam menyelesaikan tugas	
		Tidak bertanggung jawab, tidak berupaya	1
		sungguh-sungguh dalam menyelesaikan	
		tugas	

3. Penilaian Keterampilan

No.	Aspek	3	2	1
1	Melakukan kegiatan sesuai prosedur			
2	Kerja sama dengan teman kelompok			
3	Membuat kesimpulan			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	
1	Percobaan sesuai	Sesuai dengan langkah kerja	3
	prosedur	Kurang sesuai dengan langkah kerja	2
		Tidak sesuai dengan langkah kerja	1
2	Kerja sama dengan	Kompak	3
	teman kelompok	Kurang kompak	2

		Tidak kompak	1
3	Membuat kesimpulan	Membuat kesimpulan benar	3
		Membuat kesimpulan 1 tidak benar	2
		Membuat kesimpulan salah semua	1

epala SMA Negeri 5 Jeneponto

Ahmad M. S.Pd

NIP. 19700525 199903 1006

Jeneponto,

Oktober 2017 Peneliti

Wiwik

Guru Pamong

Nurmiati. S.Pd NIP. 198107052006042047

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN: FISIKA

MATERI POKOK : GERAK HARMONIK SEDERHANA

KELAS/SEMESTER : XI/I

WAKTU : 3 X 45 Menit

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar

1.2 Menyadari kebesaran Tuhan yang menciptakan dan mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurannya

2.1 Menunjukkan perilaku ilmiah (memiliki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi

Indikator

- 1.2.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 2.1.1 Menunjukan rasa ingin tahu ketika bertanya dan menjawab pertanyaan
- 2.1.2 Menunjukkan perilaku jujur, teliti dalam melakukan percobaan dan menyajikan data
- 2.1.3 Menunjukan kerja sama dan bertanggung jawab dalam kerja kelompok
- 3.4 Menganalisis hubungan antara gaya dengan gerak getaran

Indikator

- 1. Menjelaskan konsep gerak harmonis sederhana
- 2. Menjelaskan konsep gaya pemulih pada getaran harmonis
- 3. Mengidentifikasi faktor yang mempengaruhi getaran harmonis pada ayunan bandul
- 4. Menghitung besar periode dan frekuensi pada gerak harmonic sederhana
- 4.2 Merencanakan dan melaksanakan percobaan getaran harmonis pada ayunan bandul dan getaran pegas

Indikator

- 1. Merancang kegiatan percobaan getaran harmonis
- 2. Melakukan percobaan untuk memahami konsep gerak harmonis pada ayunan bandul
- 3. Menyajikan dan mengolah data hasil percobaan terkait dengan gerak harmonis pada ayunan bandul

- 4. Memformulasikan hubungan antara panjang tali dengan periode berdasarkan dari hasil percobaan
- 5. Menyimpulkan hasil percobaan getaran pada bandul

C. Tujuan Pembelajaran

- 1. Peserta didik dapat mengetahui pengertian gerak harmonik
- 2. Peserta didik mampu menyebutkan besaran-besaran fisis pada ayunan bandul
- 3. Peserta didik dapat menjelaskan faktor-faktor yang mempengaruhi getaran harmonik pada bandul
- 4. Peserta didik dapat menjelaskan konsep gaya pemulih
- 5. Peserta didik dapat menunjukan persamaan gaya pemulih pada ayunan bandul
- 6. Peserta didik dapat menghitung frekuensi dan periode pada ayunan bandul
- Peserta didik dapat melakukan percobaan menggunaan ayunan bandul untuk mengetahui faktor-faktor yang mempengaruhi periode pada ayunan bandul
- 8. Melalui percobaan peserta didik dapat menjelaskan hubungan antara panjang tali dengan periode pada ayunan bandul
- 9. Peserta didik dapat menyimpulkan hasil percobaan getaran pada bandul
- 10. Peserta didik dapat menunjukkan perilaku jujur dan teliti dalam menyajikan data
- 11. Peserta didik dapat menunjukan kerjasama dan bertanggung jawab dalam kerja kelompok

D. Materi Pembelajaran

- Pengertian getaran harmonik
- Besaran-besaran getaran harmonis pada bandul

E. Metode Pembelajaran

Pendekatan : Saintifik

Model : Discovery Learning

Metode : Eksperimen, diskusi, dan Demostrasi

F. Media, Alat, dan Sumber Belajar

Media : Laptop, LCD, Spidol, papan tulis dan LKPD

Alat : Beban, Stopwatch, tali/benang, penggaris, busur

Sumber Belajar :

• Kanginan, Marthen. 2006.. *Fisika Untuk SMA Kelas XI*. Jakarta: Erlangga.

• Handayani, Sri. 2009. *Fisika 2 untuk SMA/MA Kelas XI*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.

G. Kegiatan Pembelajaran

No	Kegiatan	Kegiatan Guru	Kegiatan siswa	Alokasi waktu
1	Pendahuluan	 Guru mengucapkan salam, dan memeriksa kehadiran peserta didik Guru memberi apersepsi: (Media Visual) Perhatikan demostrasi gerakan bandul, masih ingatkah kalian yang dimaksud dengan satu getaran? Berapa jumlah getaran dalam satu detik? Berapa waktu yang dibutuhkan untuk melakukan satu getaran? Disebut sebagai besaran apakah pernyataan tersebut? Memberikan motivasi Bagaimana jika massa bandul Ibu ganti dengan yang lebih besar? Apa pengaruhnya terhadap periode dan frekuensi getaran bandul sederhana tersebut? 	 Peserta didik membalas salam Peserta didik dan Guru berdoa sebelum belajar Peserta didik menyimak penjelasan guru Peserta didik memperhatikan guru menyampaikan tujuan pembelajaran 	10 menit
		Menyampaikan tujuan pembelajaran		

2	Kegiatan Inti	Mengamati Mengamati	20 menit
	Fase 1	❖ Guru melakukan demostrasi di depan ❖ Peserta didik menyimak	
	Stimulation	peserta didik demostrasi yang diperagakan oleh	
		❖ Guru menyampaikan materi pelajaran dan guru	
		memberikan gambaran tentang aplikasi 💠 Peserta didik menyimak	
		gerak harmonik sederhana dengan penjelasan guru	
		memperlihatkan animasi gerak bolak-balik 🕏 Peserta didik menemukan	
		(Media visual) permasalahan dari demostrasi yang	
		❖ Mengarahkan peserta didik untuk ditampilkan	
		menemukan permasalahan berdasarkan dari	
		demostrasi dan penjelasan yang	
		disampaikan oleh guru	
		❖ Menilai keterampilan peserta didik	
		mengamati peragaan	
	Fase 2	Menanya Menanya	10 menit
	Problem	❖ Menanyakan konsep getaran harmonic (dari	
	Statement	demostrasi yang telah kalian lakukan, apa pertanyaan yang diberikan oleh	
		yang kalian ketahui tentang getaran guru berdasakan dari demostrasi	
		harmonic? yang ditampilkan	

Fase 3	Mengumpulkan Informasi	Mengumpulkan Informasi	
Data Collecting	❖ Meminta peserta didik membentuk	❖ Peserta didik membentuk	
	kelompok yang terdiri dari 4-5 orang	kelompok	
	perkelompok	Peserta didik mengambil dan	
	 Membagikan LKPD kepada masing-masing 	memahami isi dalam LKPD	
	kelompok	Peserta didik melakukan	
	Meminta peserta didik untuk membaca	percobaan menggunakan ayunan	30 Menit
	buku atau referensi lainnya yang dapat	bandul sesuai panduan dalam	
	digunakan peserta didik untuk	LKPD	
	mempermudah menyelesaikan	Peserta didik mencermati dan	
	permasalahan pada LKPD	mencatat hasil percobaan	
	Meminta peserta didik melakukan		
	percobaan sesuai dengan panduan dalam		
	LKPD		
	Menilai sikap peserta didik dalam kerja		
	kelompok dan kemampuan peserta didik		
	menerapkan konsep dalam pemecahan		
	masalah		
Fase 4	• Mengasosiasi	• Mengasosiasi	15 menit

	Data Processing	❖ Meminta peserta didik mendiskusikan hasil	❖ Peserta didik berdiskusi mengenai	
		percobaanya	hasil percobaan yang telah mereka	
		❖ Guru membimbing/menilai kemampuan	lakukan	
		peserta didik mengolah data dan merumuskan	❖ Peserta didik menyimpulkan hasil	
		kesimpulan	diskusi kelompok	
	Fase 5	Mengkomunikasikan	• Mengkomunikasikan	30 menit
	Verifikation	❖ Guru meminta agar masing-masing kelompok	❖ Peserta didik mempersentasikan	
		mempresentasikan hasil diskusinya	hasil diskusi kelompoknya berupa	
		❖ Guru menilai kemampuan peserta didik	kesimpulan berdasarkan hasil	
		berkomunikasi secara lisan	analisis secara lisan maupun tertulis	
		❖ Guru memberikan contoh soal untuk	❖ Peserta didik dari kelompok lain	
		mengetahui sejauh mana pemahaman peserta	menanggapi hasil persentasi	
		didik selama mengikuti proses pelajaran	Peserta didik mengerjakan soal yang	
			diberikan guru	
	Fase 6	❖ Guru menjelaskan kembali materi yang tidak	Peserta didik menyimak penjelasan	5 menit
	Generalization	dipahami peserta didik	dari guru	
3	Penutup	❖ Guru bersama peserta didik mereview hasil	❖ Peserta didik dan guru mereview	15 Menit
		kegiatan yang telah dilakukan	hasil kegiatan pembelajaran.	
		❖ Memberikan tugas rumah	Peserta didik mengerjakan soal	

 ❖ Guru menginformasikan materi selanjutnya yakni mengenai gerak harmonis sederhana pada pegas, kemudian menutup pembelajaran dengan mengucapkan salam.
 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru

 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru
 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru

 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru
 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru

 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru
 ❖ Peserta didik mencatat tugas rumah yang diberikan oleh guru

H. Penilaian

1. Penilaian Pengetahuan

No	Soal Kunci jawaban		Skor
1	Jelaskan apa yang dimaksud dengan	- Gerak harmonik adalah gerak bolak-balik benda.	2
	gerak harmonis dan berikan	- Gerak harmonik adalah gerak bolak-balik benda yang	4
	contohnya?	melalui titik keseimbangan tertentu dengan beberapa	
		getaran benda tertentu.	
		- Contoh gerak harmonis ini adalah	3
		1. ayunan anak-anak	
		2. gerak bandul jam dan	
		3. getaran pegas.	
-			9
2	Sebutkan factor yang mempengaruhi	Faktor yang mempengaruhi gerak harmonis pada bandul	3
	gerak harmonis sederhana pada	yaitu:	
	bandul?	1. periode	
		2. panjang tali dan	
		3. percepatan gravitasi	
3	Jika sebuah bandul berayun selama 10	Jawab:	3
	detik dengan banyak getaran sebanyak -	Dik: t= 10 s,	
	ayunan 20 ayunan, tentukan frekuesi		1
	getaran bandul?	Penyelesaian:	
		$f = \frac{n}{t}$	2
		$=\frac{20}{10}=2\ Hz$	3
			8
4	Sebuah bandul sederhana terdiri dari	Jawab:	
	tali yang mempunyai panjang 40 cm	Dik: $1 = 40 \text{ cm} = 0.4 \text{ m}$ $g = 10 \text{ m/s}^2$	3
	dan pada ujung bawah tali digantungi	m = 100 g = 0.1 kg Dit:T dan f=?	
	beban bermassa 100 gram. Jika	Penyelesaian:	2
	percepatan gravitasi 10 m/s ² , maka	_	
	berapakah periode dan frekuensi	$\bullet T = 2\pi \sqrt{\frac{l}{g}}$	2
	ayunan bandul sederhana?	V -	

	$=2\pi\sqrt{\frac{0.4}{10}}$	2 4
	$= 2x \ 3,14\sqrt{0,04} = 6,28 \ x0,2 = 1,26 \ s$	2
	$\bullet f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$	5
	$= \frac{1}{2\pi} \sqrt{\frac{10}{0.4}} = \frac{1}{2x \ 3.14} \sqrt{25} = 0.16 \ x5 = 0.8 \ Hz$	٥
	,	20

2. Penilaian Sikap

No.	Aspek	3	2	1
1	Kehadiran peserta didik			
2	Keseriusan dalam belajar			
3	Kejujuran			
4	Kritis			
5	Teliti			
6	Tanggung Jawab			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Kehadiran peserta didik	Hadir tepat waktu	3
		Hadir telat	2
		Tidak hadir	1
2	Keseriusan dalam	Peserta didik memperhatikan demonstrasi	
	belajar	dengan baik dan memperhatikan apa yang	3
		dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi tetapi masih memperhatikan	2
		apa yang dibicarakan guru	
		Peserta didik tidak memperhatikan	1

		demonstrasi dan tidak memperhatikan apa	
		yang dibicarakan guru	
3	Kejujuran	Peserta didik mengisi LKPD sesuai	3
		pengamatannya	
		Peserta didik mengisi LKPD dengan	2
		melihat lembar kerja temannya	
		Peserta didik tidak mengisi LKPD	1
4	Kritis	Menunjukan sikap kritis yang besar,	3
		antusias aktif dalam kegiatan kelompok	
		Menunjukan sikap kritis yang besar,	2
		namun tidak terlalu antusias dan baru	
		terlibat aktif dalam kegiatan kelompok	
		ketika disuruh	
		Tidak menunjukan antusias dalam	1
		pengamatan, sulit terlibat aktif dalam	
		kegiatan kelompok	
5	Teliti	Teliti dalam melakukan pengamatan	3
		Kurang teliti ketika melakukan	2
		pengamatan	
		Tidak teliti ketika melakukan pengamatan	1
6	Tanggung Jawab	Tanggung jawab dalam menyelesaikan	3
		tugas dengan hasil yang baik, berupaya	
		dengan tepat waktu	
		Kurang tanggung jawab, berupaya tepat	2
		waktu dalam menyelesaikan tugas	
		Tidak bertanggung jawab, tidak berupaya	1
		sungguh-sungguh dalam menyelesaikan	
		tugas	
	•		

3. Penilaian Keterampilan

No.	Aspek Kegiatan	3	2	1
1	Mengikat beban, mengukur panjang tali			
2	Melepaskan tali pada jarak tertentu			
3	Mengukur waktu			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	Skor
1	Mengikat beban,	Mengikat beban, mengukur panjang tali dengan	3
	mengukur	benar	
	panjang tali	Mengikat beban, mengukur panjang tali dengan	2
		benar tapi kurang erat	_
		Mengikat beban, mengukur panjang tali tidak	1
		benar	-
2	Melepaskan tali	Melepaskan tali dan meluncurkannya dengan	
	pada jarak	tenang dan hati-hati tanpa mengeluarkan gaya	3
	tertentu	yang besar	
		Melepaskan tali dan meluncurkannya dengan	
		hati-hati tanpa mengeluarkan gaya yang besar	2
		tetapi kurang hati-hati	
		Melepaskan tali dan meluncurkannya dengan	
		tenang dan hati-hati tetapi mengeluarkan gaya	1
		yang besar	
3	Mengukur waktu	Mengukur waktu dimulai dari ketika melepaskan	
		beban, dan menghentikan ayunan pada jumlah	3
		ayunan yang telah ditentukan dan mencatat	3
		waktu	
		Mengukur waktu dimulai tetapi tidak	
		melepaskan beban, dan menghentikan ayunan	2
		pada jumlah ayunan yang telah ditentukan dan	2
		mencatat waktu	

Mengukur	waktu	dimulai	tetapi	tidak	
melepaskan	beban,	dan tidak	menghe	entikan	1
ayunan pa	da juml	ah ayunan	yang	telah	1
ditentukan d	an menca	tat waktu			

Mengelahut

epala SMA Negeri 5 Jeneponto

Almad. M., S.Pd NIP. 19700525 199903 1006

Jeneponto,

Oktober 2017 Peneliti

Wiwik

Guru Pamong

Nurmiati. S.Pd NIP. 198107052006042047

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI POKOK : GERAK HARMONIK SEDERHANA

KELAS/SEMESTER : XI/I

WAKTU : 3 X 45 Menit

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar

1.1 Menyadari kebesaran Tuhan yang menciptakan dan mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurannya

2.1 Menunjukkan perilaku ilmiah (memiliki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi

Indikator

- 1.1.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 2.1.1 Menunjukan rasa ingin tahu ketika bertanya dan menjawab pertanyaan
- 2.1.2 Menunjukkan sikap rasa jujur, teliti, kritis, dalam berdiskusi dan melakukan percobaan.
- 2.1.3 Menunjukan kerja sama dan komunikasi dalam kerja kelompok
- 3.4 Menganalisis hubungan antara gaya dengan gerak getaran

Indikator

- Mengidentifikasi faktor-faktor yang mempengaruhi gerak harmonis pada pegas
- 2. Menghitung periode dan frekuensi pada pegas
- Memformulasikan hubungan antara periode kuadrat dengan massa pada pegas
- 4. Menjelaskan penerapan getaran harmonis dalam kehidupan seharihari
- 4.4 Merencanakan dan melaksanakan percobaan getaran harmonik pada ayunan bandul dan getaran pegas

Indikator

- Melakukan percobaan untuk memahami konsep gerak harmonis pada pegas
- 2. Menyajikan dan mengolah data hasil dari percobaan
- 3. Menyimpulkan hasil percobaan getaran pada pegas
- 4. Menghitung konstanta gaya pegas melalui percobaan pegas gerak harmonic sederhana

C. Tujuan Pembelajaran

- 1. Peserta didik dapat menghitung frekuensi dan periode pada pegas
- 2. Peserta didik dapat menjelaskan hubungan antara periode kuadrat dengan massa beban pada pegas
- 3. Melalui percobaan menggunakan pegas peserta didik dapat mengetahui faktor-faktor yang mempengaruhi periode pada pegas
- 4. Melalui percobaan gerak harmonik peserta didik dapat menghitung konstanta gaya pegas
- 5. Peserta didik dapat menemukan penerapan gerak harmonic sederhana dalam kehidupan sehari-hari
- 6. Peserta didik dapat menyimpulkan hasil percobaan getaran pada pegas
- 7. Peserta didik menunjukkan perilaku ilmiah dalam melakukan percobaan dan diskusi

D. Materi Pembelajaran

- Konsep getaran harmonik pada pegas
- Hukum Hooke

E. Metode Pembelajaran

• Pendekatan : Saintifik

• Model : Discovery Learning

• Metode : Eksperimen, diskusi, dan Demostrasi

F. Media, Alat, dan Sumber Belajar

Media : Laptop, LCD, Spidol, papan tulis dan LKPD

• Alat : Beban, Stopwatch, tali/benang, penggaris, busur

Sumber Belajar :

- Kanginan, Marthen. 2006. *Fisika Untuk SMA Kelas XI*. Jakarta: Erlangga.
- Handayani, Sri. 2009. *Fisika 2 untuk SMA/MA Kelas XI*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.

G. KEGIATAN PEMBELAJARAN

No	Kegiatan	Kegiatan Guru	Kegiatan siswa	Alokasi waktu
1	Pendahuluan	Guru mengucapkan salam, dan memeriksa	Peserta didik membalas salam	15 menit
		kehadiran peserta didik	Peserta didik dan Guru berdoa sebelum	
		Memberikan apersepsi	belajar	
		Pernahkah kamu mengamati peredam kejut	Peserta didik menyimak penjelasan	
		kendaraan saat kendaraan melewati jalan	guru	
		yang tidak rata? Apa sebenarnya fungsi		
		pegas pada peredam kejut?		
		Memberikan motivasi (Media Visual)		
		Jika sebuah beban digantungkan pada		
		ujung pegas dan kemudian ditarik, pegas		
		akan bertambah panjang. Ketika tarikan		
		dilepaskan, beban akan bergerak naik		
		turun, apa yang menyebabkan beban		
		tersebut bergerak naik turun?		
		Menyampaikan tujuan pembelajaran		

2	Kegiatan Inti	• Mengamati	15 menit
	Fase I	❖ Guru menampilkan gambar/vidio gambar/vidio yang ditampilkan	
	(Stimulation/	contoh konsep gerak harmonis oleh guru	
	memberikan	sederhana pada pegas (Media Visual) * Melakukan demostrasi yang	
	rangsangan)	❖ Memberikan demostrasi (Sebuah pegas telahdicontohkan oleh guru	
		yang diberi beban kemudian ditarik	
		❖ Menilai keterampilan mengamati	
		peserta didik	
	Fase 2	Menanya Menanya	5 menit
	Identifikasi masalah	❖ Berdasarkan dari gambar dan demostrasi ❖ Peserta didik mengemukakan	
		yang dilakukan yang ditampilkan, pertanyaan mengenai materi yang	
		peserta didik diberi kesempatan untuk dipelajari	
		mengemukakan pertanyaan	
	Fase 3	Mengumpulkan Informasi Mengumpulkan Informasi	30 menit
	Data Collection	❖ Meminta peserta didik duduk bersama ❖ Peserta didik duduk bersama dengan	
	(Mengumpulkan	dengan teman kelompoknya masing- teman kelompoknya yang sudah	
	data)	masing dibentuk	
		❖ Guru membagikan LKPD kepada ❖ Peserta didik mengambil dan	
		masing-masing kelompok memahami isi LKPD	

	❖ Guru menjelaskan prosedur percobaan,	❖ Peserta didik menyimak penjelasan	
	dan meminta peserta didik melakukan	guru dan melakukan percobaan	
	percobaan	sesuai dengan petunjuk yang ada di	
	❖ Menilai sikap peserta didik dalam kerja	LKPD	
	kelompok		
Fase 4	Mengasosiasi	Mengasosiasi	15 menit
Data Processing	❖ Masing-masing kelompok	❖ Masing-masing kelompok	
(Mengolah data)	mendiskusikan hasil percobaan yang	mendiskusikan hasil diskusinya	
	mereka lakukan bersama dengan teman	❖ Peserta didik menyimpulkan hasil	
	anggota kelompoknya	diskusi kelompok	
	❖ Guru membimbing/menilai kemampuan		
	peserta didik mengolah data dan		
	merumuskan kesimpulan		
Fase 5	Mengkomunikasikan	Mengkomunikasikan	30 menit
Verification	❖ Guru meminta agar masing-masing	❖ masing-masing kelompok	
(Menguji Hasil)	kelompok mempresentasikan hasil	mempersentasikan hasil diskusinya	
	diskusi di depan kelas, dan kelompok	berupa kesimpulan berdasarkan hasil	
	yang lain mengajukan pertanyaan untuk	analisis secara lisan maupun tertulis,	
	menanggapi hasil presentasi	dan kelompok lain menanggapi hasil	

		❖ Guru menilai kemampuan peserta didik	dengan mengajukan pertanyaan	
		kemampuan berkomunikasi secara lisan	Peserta didik mengerjakan soal yang	
		❖ Memberi soal untuk mengetahui sejauh	diberikan oleh guru	
		mana pemahaman peserta didik		
		mengenai materi yang dijelaskan		
	Fase 6	❖ Guru meminta perwakilan salah satu	❖ Salah satu peserta didik	10 menit
	Generalization	peserta didik menyimpulkan percobaan	menyimpulkan percobaan telah	
	(Menyimpulkan)	yang dilakukan	mereka lakukan	
3	Penutup	❖ Guru bersama peserta didik mereview	❖ Peserta didik dan guru mereview	15 menit
		hasil kegiatan pembelajaran	hasil kegiatan pembelajaran.	
		❖ Memberikan pekerjaan rumah kepada	❖ Peserta didik mencatat tugas rumah	
		peserta didik berupa tugas	dan mengerjakan soal-soal yang	
		❖ Guru menginformasikan materi	diberikan	
		selanjutnya yakni mengenai persamaan	Membalas salam	
		simpangan kemudian menutup		
		pembelajaran dengan mengucapkan		
		salam		

H. Penilaian

1. Penilaian Pengetahuan

No	Soal	Kunci jawaban	Skor
1	Sebutkan contoh getaran yang	Jawab:	
	selalu kalian temui dalam	1. Getaran senar gitar yang dipetik	2
	kehidupan sehari-hari!	2. Getaran permukaan bumi ketika terjadi gempa	
		Getaran senar gitar yang dipetik	
		2. Getaran permukaan bumi ketika terjadi gempa	4
		3. Bandul jam dinding yang bergoyang-goyang	
		4. Pegas yang diberi beban	
		1. Getaran senar gitar yang dipetik	
		2. Getaran permukaan bumi ketika terjadi gempa	
		3. Bandul jam dinding yang bergoyang-goyang	
		4. Pegas yang diberi beban	6
		5. Ayunan anak-anak	
		6. Springbed	
			6
2.	Sebutkan factor yang	Jawab: factor yang mempengaruhi GHS pada	2
	mempengaruhi periode dan	pegas adalah massa dan konstanta pegas	
	frekuensi gerak harmonic		
	pada pegas!		

3	Jika massa beban yang	Jawab:	3
	digantung pada ujung bawah	Dik: $m_1 = 3 \text{ kg}$ $m_2 = 9 \text{ kg}$ $T_1 = 7 \text{ s}$	
	pegas 3 kg, maka periode	Dit: T_2 =?	1
		Penyelesaian:	1
	getarannya 7 sekon. Jika	m_2	2
	massa beban dilipat gandakan	a. $\frac{T_2}{T_1} = 2\pi \sqrt{\frac{\frac{m_2}{k}}{\frac{m_1}{k}}}$	
	menjadi 9 kg, maka tentukan	m_2	2
	periode dan frekuensi	$T_2 = T_1 \sqrt{\frac{m_2}{m_1}}$	
	getarannya?	$T_2 = 7\sqrt{\frac{9}{3}} = 12,1 s$	3
		b. $f = \frac{1}{T}$	2
		$= \frac{1}{12,1} = 0.08 Hz$	3
			16

2. Penilaian Sikap

No.	Aspek	3	2	1
1	Kehadiran peserta didik			
2	Keseriusan dalam belajar			
3	Kerjasama dalam kelompok			
4	Kejujuran			
5	Teliti			
6	Tanggung Jawab			

Rubrik

No.	Aspek	Rubrik Penilaian Sikap	
	Kehadiran peserta didik	Hadir tepat waktu	3
1		Hadir telat	2
		Tidak hadir	1
	Keseriusan dalam	Peserta didik memperhatikan demonstrasi	
2	belajar	dengan baik dan memperhatikan apa yang	3
2		dibicarakan guru	
		Peserta didik tidak memperhatikan	2

		demonstrasi tetapi masih memperhatikan	
		apa yang dibicarakan guru	
		Peserta didik tidak memperhatikan	
		demonstrasi dan tidak memperhatikan apa	1
		yang dibicarakan guru	
	Kerjasama dalam	Peserta didik terlibat aktif dalam diskusi	
	kelompok	kelompok dan menyelesaikan	3
		permasalahan pada LKPD	
		Peserta didik sesekali terlibat aktif dalam	
3		diskusi kelompok dan menyelesaikan	2
		permasalahan pada LKPD	
		Peserta didik tidak terlibat aktif dalam	
		diskusi kelompok dan menyelesaikan	1
		permasalahan pada LKPD	
	Kejujuran	Peserta didik mengisi LKPD sesuai	3
		pengamatannya	3
4		Peserta didik mengisi LKSPDdengan	2
		melihat lembar kerja temannya	2
		Peserta didik tidak mengisi LKPD	1
	Teliti	Peserta didik memperhatikan apa yang	
		dijelaskan, menghitung dengan tepat dan	3
		benar, melakukan percobaan dengan ulet	3
		dan menulis dengan rapi	
		Peserta didik memperhatikan apa yang	
5		dijelaskan, menghitung dengan tepat dan	2
		benar, tetapi melakukan percobaan tidak	1
		ulet dan menulis kurang rapi	
		Peserta didik memperhatikan apa yang	
		dijelaskan, tetapi tidak menghitung	1
		dengan tepat dan benar, melakukan	

		percobaan tidak ulet dan menulis kurang	
		rapi	
	Tanggung Jawab	Peserta didik mengumpulkan LKPD tepat	2
		waktu dan mengisi LKPD dengan lengkap	3
6		Peserta didik mengumpulkan LKPD tidak	
		tepat waktu dan mengisi LKPD dengan	2
		lengkap	
		Peserta didik tidak mengumpulkan LKPD	1

Menselahui Kepala SMA Negeri 5 Jeneponto

Almad. M., S.Pd NIP. 19700525 199903 1006

Jeneponto,

Oktober 2017 Peneliti

Wiwik

Guru Pamong

Nurmiati. S.Pd NIP. 198107052006042047

RENCANA PELAKSANAAN PEMBELAJARAN

(RPP)

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI POKOK : GERAK HARMONIK SEDERHANA

KELAS/SEMESTER : XI/I

WAKTU : 3 X 45 Menit

A. Kompetensi Inti

1. Menghayati dan mengamalkan ajaran agama yang dianutnya.

- 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.
- 3. Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah.
- 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif dan kreatif, serta mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar

1.1 Menyadari kebesaran Tuhan yang menciptakan dan mengatur alam jagad raya melalui pengamatan fenomena alam fisis dan pengukurannya

2.1 Menunjukkan perilaku ilmiah (memiliki rasa ingin tahu, objektif, jujur, teliti, cermat, tekun, hati-hati, bertanggung jawab, terbuka, kritis, kreatif, inovatif, dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud imlementasi sikap dalam melakukan percobaan, melaporkan, dan berdiskusi

Indikator

- 1.1.1 Menunjukkan kekaguman akan kebesaran Tuhan yang menciptakan alam semesta beserta isinya
- 2.1.1 Menunjukan rasa ingin tahu ketika bertanya dan menjawab pertanyaan
- 2.1.2 Menunjukkan sikap rasa jujur, teliti, dalam berdiskusi
- 3.4 Menganalisis hubungan antara gaya dengan gerak getaran

Indikator

- 1. Menghitung persamaan simpangan
- 2. Membuktikan persamaan kecepatan dan percepatan pada gerak harmonis sederhana
- 3. Menghitung sudut fase dan beda fase pada gerak harmonis sederhana
- 4. Menghitung persamaan energi pada gerak harmonis harmonis

C. Tujuan Pembelajaran

- 1. Peserta didik dapat menghitung persamaan simpangan
- 2. Peserta didik dapat membuktikan kecepatan, dan percepatan
- 3. Peserta didik dapat menghitung sudut fase dan beda fase pada gerak harmonic sederhana
- 4. Peserta didik dapat menjelaskan energi pada gerak harmonis
- 5. Peserta didik dapat menghitung persamaan energi pada gerak harmonis sederhana
- 6. Peserta didik dapat menunjukan sikap jujur dan teliti saat berdiskusi

D. Materi Pembelajaran

- Persamaan gerak harmonik sederhana
- Sudut fase dan beda fase
- Persamaan energi

E. Metode Pembelajaran

• Pendekatan : Saintifik

• Model : Discovery Learning

• Metode : Eksperimen, diskusi, dan Demostrasi

F. Media, Alat, dan Sumber Belajar

• Media : Laptop, LCD, Spidol, papan tulis dan LKPD

• Alat : Beban, Stopwatch, tali/benang, penggaris, busur

• Sumber Belajar:

- Kanginan, Marthen. 2006. *Fisika Untuk SMA Kelas XI*. Jakarta: Erlangga.

- Handayani, Sri. 2009. *Fisika 2 untuk SMA/MA Kelas XI*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.

G. KEGIATAN PEMBELAJARAN

No	Kegiatan	Kegiatan Guru	Kegiatan siswa	Alokasi waktu
1	Pendahuluan	 Guru mengucapkan salam dan memeriksa kehadiran peserta didik Apersepsi Memberikan pertanyaan mengenai materi yang sudah dipelajari sebelumnya yaitu konsep getaran harmonis dan aplikasinya dalam kehidupan sehari-hari Motivasi Menyajikan video yang berkaitan dengan materi yang akan dipelajari Menyampaikan tujuan pembelajaran 	 Peserta didik membalas salam Peserta didik dan Guru berdoa sebelum belajar Menjawab pertanyaan yang diberikan oleh guru mengenai konsep getaran harmonis dan aplikasinya dalam kehidupan sehari-hari Memperhatikan video tersebut dengan baik Peserta didik memperhatikan tujuan yang akan dicapai 	10 menit
2	Kegiatan Inti Fase 1	• Mengamati	Peserta didik mengamati gambar yang diperlihatkan guru	10 menit
	Stimulation (Pemberian rangsangan)	berhubungan dengan simpangan, kecepatan dan pevcepatan (Media Visual)		

	Menilai keterampilan mengamati peserta didik		
Fase 2	Menanya	• Menanya	5 menit
Identifikasi	Membimbing dan mengarahkan peserta	❖ Peserta didik mengajukan	
Masalah	didik mengajukan pertanyaan	pertanyaan berdasarkan dari	
	berdasarkan dari gambar yang diamatinya	gambar yang telah diamatinya	
Fase 3	Mengumpulkan Informasi	Mengumpulkan Informasi	35 menit
Data Processing	Menjelaskan persamaan simpangan	❖ Peserta didik duduk bersama	
(Pengumpulan	pada gerak harmonik sederhana	dengan teman kelompoknya yang	
Data)	❖ Meminta peserta didik duduk	sudah dibentuk	
	bersama dengan teman kelompoknya	❖ Peserta didik membaca dan	
	masing-masing	memahami LKPD yang	
	Membagikan LKPD ke masing- masing kelompok	dibagikan oleh guru	
Fase 4	Mengasosiasi	• Mengasosiasi	20 menit
Data Collecting	❖ Meminta peserta didik mendiskusikan	❖ Masing-masing kelompok	
(Mengolah Data)	pertanyaan yang terdapat dalam LKPD	melakukan diskusi dengan teman	
	❖ Mengamati dan membimbing jalannya	kelompoknya	
	pelaksanaan diskusi		
Fase 5	Mengkomunikasikan	Mengkomunikasikan	30 Menit

	Verifikation	❖ Guru meminta agar masing-masing	❖ masing-masing kelompok	
		kelompok mempresentasikan hasil	mempersentasikan hasil	
		diskusi kelompoknya di depan kelas,	diskusinya berupa kesimpulan	
		dan kelompok yang lain mengajukan	berdasarkan hasil analisis secara	
		pertanyaan untuk menanggapi hasil	lisan maupun tertulis	
		presentasi	❖ Peserta didik dari kelompok lain	
		❖ Guru menilai kemampuan peserta	menanggapi hasil persentasi dan	
		didik berkomunikasi secara lisan	mengajukan pertanyaan atau	
		❖ Guru memberikan soal yang harus	pendapat	
		dikerjakan peserta didik	❖ Peserta didik mengerjakan soal	
			yang diberikan	
3	Penutup	❖ Guru bersama peserta didik mereview	❖ Peserta didik dan guru mereview	20 Menit
	Fase 6	hasil proses pembelajaran	hasil kegiatan pembelajaran.	
	Generalization	❖ Guru melakukan refleksi dengan	Membalas salam	
		mengecek pemahaman peserta didik		
		selama mengikuti pembelajaran		
		❖ Memberi salam		

I. Penilaian

1. Penilaian Pengetahuan

No	Soal	Kunci jawaban	Skor
1	Sebuah benda melakukan gerak	Jawab:	
	harmonik dengan amplitudo 2A. Pada	Dik: $A = 2A$ $v = \frac{1}{4} v_{maks}$	2
	saat kecepatannya sama dengan	Dit: y:?	1
	seperempat kecepatan maksimum,	$v = \frac{1}{4}v_{maks} = \frac{1}{4}A\omega$	2
	tentukan simpangannya!	$\omega\sqrt{A^2 - y^2} = \frac{1}{4}A\omega$	2
		$A^2 - y^2 = \frac{1}{4}A^2, maka$	2
		$y^2 = \frac{3}{4}A^2$	2
		$jadi, y = \frac{\sqrt{3}}{2}A = 0.87 A$	3
			14
2	Sebuah benda dengan massa 4 gram	Jawab:	
	digetarkan dengan $y = 0.05 \sin 300t$.	Dik: $m = 4 g = 4 \times 10^{-3} kg$ $t = 2 s$	4
	Tentukan kecepatan dan percepatan	$Y = 0.05 \sin 300t$ $\omega = 300$	
	maksimumnya saat $t = 2$ s.	Dit: $v dan a = \dots$?	2
		Penyelesaian:	2
		$v = \omega A \cos \omega t$	
		$= 300 \times 0.05 \times \cos 300.2 = -7.5 m/s$	3
		$a = \omega^2 A \sin \omega t$	2
		$= 300^2 \times 0.05 \times \sin 300.2 = 3915 m/s^2$	3
			16
3	Suatu benda bergetar harmonic	Jawab:	
	sederhana dengan amplitudo 4 cm dan	Dik: $A = 4 \text{ cm}$ $f = 5 \text{ Hz}$ $y= 2 \text{ cm}$	3
	frekuensi 5 Hz. Saat simpangannya	Dit: θ:?	1
	mencapai 2 cm, jika sudut fase awal	Penyelesaian:	
	nol, maka berapa sudut fase	$y = A \sin (\omega t + \theta_0)$	2
	getarannya?	$2 = 4 \sin (\omega t + \theta_0)$	2
	_	$\sin(\omega t + \theta_0) = \frac{2}{4}$, atau $\sin(\omega t + \theta_0) = \frac{1}{2}$	2
		$\omega t + \theta_0 = 30^0$	
		maka sudut fase getarannya adalah 30°	3
			13
4	Sebuah benda yang massanya 200	Jawab:	

gram bergetar harmonik dengan Dik: $m = 200 \text{ g} = 0.2 \text{ kg}$ $T = 0.2 \text{ s}$	
periode 0,2 sekon dan amplitudo 2 cm. $A = 2 \text{ cm} = 0.02 \text{ m}$ $y = 1 \text{ cm} = 0.01 \text{ m}$	4
Tentukan: Dit:	
a. Besar energi kinetik saat a. $E_K = \dots$?	3
simpangannya 1 cm b. $E_P = \dots$?	
b. Besar energi potensial saat c. $E_{total} = \dots$?	
simpangannya 1 cm Penyelesaian:	
c. besar energi total a. $v = \omega \sqrt{A^2 - y^2} = 2\pi f \sqrt{A^2 - y^2}$	2
$v = 2\pi 5\sqrt{(2x10^{-2})^2 - (1x10^{-2})^2}$	2
$= 10\pi\sqrt{(4x10^{-4} - 10^{-4})} = 0.1\sqrt{3}\pi m/s$	3
$E_K = \frac{1}{2} m v^2$	2
$= \frac{1}{2} \cdot 2x \cdot 10^{-1} \cdot (0.1\sqrt{3}\pi)^2 = 3\pi^2 x \cdot 10^{-3} J$	3
b. $E_P = \frac{1}{2}m\omega^2 y^2$	2
$= \frac{1}{2} (2x10^{-1})(10\pi)^2 (1x10^{-2})^2$	4
$= (10^{-1}) (10^{2} \pi^{2}) (10^{-4}) = \pi^{2} x 10^{-3} J$	
$c. E = E_K + E_P$	2
$= 3\pi^2 x \ 10^{-3} + \pi^2 \ x \ 10^{-3} = 4\pi^2 \ x \ 10^{-3} \ J$	3
	23

Jeneponto, Oktober 2017 Peneliti

Wiwik

Guru Pamong

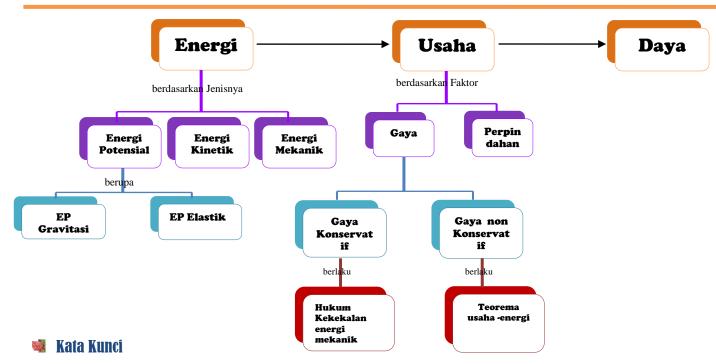
Nurmiati. S.Pd NIP. 198107052006042047

Mengerahari Kepala SMA Negeri 5 Jeneponto Almade M. S.Pd NIP. 19700525 199903 1006

BAB

4

Usaha Dan Energi



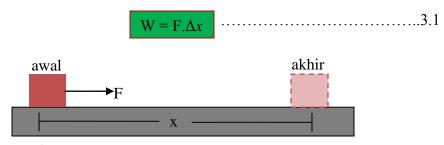
Pernahkah kamu mengamati orang yang sedang memanah? Mengapa anak panah yang dilepaskan dapat melesat jauh hingga mencapai sasaran? Anak panah dapat mencapai sasaran karena mendapat energi dari pemanah. Sebelum melepaskan anak panah, seorang pemanah harus merentangkan busurnya terlebih dahulu. Busur yang terentang memiliki energi potensial. Ketika anak panah dilepaskan, energi potensial tersebut berubah menjadi energi kinetik yang digunakan anak panah untuk bergerak. Untuk mempelajari lebih lanjut tentang energi dan perubahannya, maka dalam bab ini, akan dipelajari usaha, energi kinetik, energi potensial, energi mekanik. Kemudian dilanjutkan dengan teorema usaha dan energi yang digunakan untuk menyelesaikan masalah gerak yang melibatkan gaya konservatif dan gaya non-konservatif. Bila pada benda hanya bekerja gaya-gaya konservatif, maka berlaku hukum kekekalan energi mekanik

TUJUAN PEMBELAJARAN

Dapat menentukan hubungan antara gaya, usaha, energi, dan daya

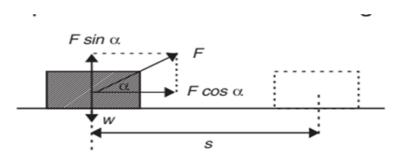
PETA KONSEP

- Energi Potensial
- Energi Kinetik
- Gaya Konservatif
- Hukum Kekekalan Energi Mekanik
- Daya


Dalam kehidupan sehari-hari, usaha berarti segala sesuatu yang dikerjakan manusia. Usaha menurut pengertian sehari-hari berbeda dengan pengertian usaha menurut fisika.

Mengapa pengertian usaha dalam kehidupan sehari-hari berbeda dengan pengertian usaha menurut fisika?

Usaha dalam fisika hanya dilakukan oleh gaya yang bekerja pada benda agar benda mengalami perpindahan.


Seseorang yang mendorong dinding tembok dikatakan tidak melakukan usaha atau kerja, meskipun orang tersebut mengeluarkan gaya dorong yang sangat besar. Dalam kehiduapn sehari-hari orang tersebut memang melakukan usaha karena telah mengeluarkan sebagian energinya. Namun, dalam fisika orang tersebut tidak melakukan usaha dikarenakan tembok tidak mengalami perpindahan atau bergerak.

Berbeda halnya dengan orang yang mendorong lemari, sehingga lemari berpindah tempat. Orang tersebut dikatakan melakukan usaha atau kerja karena lemari mengalami perpindahan. Jadi, sekarang jika ada sebuah contoh anak- anak berlari mengelilingi lapangan dan anak tersebut kembali ke awal mulai berlari maka anak tersebut juga tidak melakukan usaha. Besarnya usaha ini dipengaruhi oleh gaya yang bekerja dan sejauh mana benda tersebut berpindah. Usaha dapat didefenisikan sebagai hasil kali gaya searah dengan perpindahannya. Dengan besar perpindahan atau secara sistematis ditulis:

Gambar 3.1 Usaha dengan gaya F searah dengan perpindahan

1. Gaya F menyebabkan perpindahan sejauh x, maka gaya F melakukan W = F. Δx

Gambar 3.2 Gaya F yang diberikan membentuk sudut

2. Gaya F membentuk sudut θ dengan perpindahan Δx , maka W = F. $\Delta x \cos \theta$

#Mari Berfikir#

Wahyu pulang sekolah selalu naik ojek, namun hari ini ada yang berbeda setelah dia mendapat pelajaran tentang Usaha dan Energi. Agar meminta tukang ojek untuk mengantarnya mengambil tugas di warnet dan kembali ke sekolah. Saat sampai di sekolah, Wahyu tidak mau memebayar jasa tukang ojek karena motor tukang ojek tidak melakukan usaha. Tentu saja tukang ojek marah. Dapatkah kalian menyelesaikan maslah Wahyu dan tukang ojek?

CONTOH SOAL1

Sebuah balok bermassa 5 kg di atas lantai licin ditarik gaya 4 N membentuk sudut 60⁰ terhadap bidang horizontal. Jika balok berpindah sejauh 2 m, tentukan usaha yang dilakukan!

Penyelesaian:

Dik:
$$m = 5 \text{ kg}$$

$$F = 4 N$$

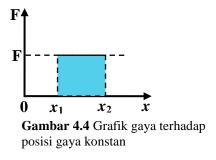
$$F = 4 N \qquad \qquad \theta = 60^0 \qquad \qquad x = 2 m$$

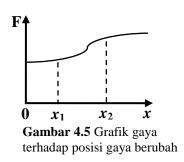
$$y - 2 m$$

Dit: $W = \dots$? Jawab:

$$\mathbf{W} = \mathbf{F}. \, \Delta x \cos \theta$$

$$= 4. 2 \cos 60^{0} = 4 \text{ Joule}$$


Kerja mandiri


Kerjakan soal berikut dengan tepat!

- 1. Sebuah benda meluncur di atas papan kasar sejauh 5 m. Jika benda mendapat perlawanan gesekan dengan papan sebesar 180 N, berapa besarnya usaha yang dilakukan oleh benda tersebut?
- 2. Gaya sebesar 60 N bekerja pada sebuah benda. Arah gaya membentuk sudut 30° dengan bidang horizontal. Jika benda berpindah sejauh 50 m, berapa besarnya usaha yang dilakukan oleh benda tersebut?

berpindah dari posisi awal x_1 ke posisi akhir x_2 searah dengan gaya F, maka usaha yang dilakukan gaya konstan adalah :

Apabila kita mengetahui gaya yang digambarkan seperti grafik pada gambar 3.3 dan 3.4, bagaimana kita dapat mengetahui besar usaha yang dilakukan gaya tersebut?

Hal yang harus dilakukan adalah dengan menghitung luas daerah yang diarsir atau yang dibatasi oleh posisi x_1 hingga posisi x_2 . Demikian pula pada gaya yang tidak konstan juga berlaku luasan yang dibatasi oleh posisi x_1 hingga posisi x_2

Usaha = Luas daerah yang diarsir3.3

CONTOH SOAL 2

Sebuah benda yang bermassa 15 kg ditarik dengan gaya yang berubah ubah terhadap posisi seperti gambar dibawah ini. Hitunglah usaha yang dilakukan gaya tersebut untuk memindahkan benda dari titik awal ke titik akhir.

Penyelesaian:

Langkah 1 : mencatat hal yang diketahui dalam soal m = 15 kg

Langkah 2 : karena grafiknya berubah-ubah maka kita gunakan luas untuk mencari usaha

Langkah 3 : W_1 = luas trapesium W_2 = luas trapesium

 $W_1 = \frac{(2+4)}{2} \cdot 3 = 9$ joule $W_2 = \frac{(3+2)}{2} \cdot -3 = -7.5$ joule

Jawab:

maka usaha total,

$$W_{total} = 9 J + (-7,5) J$$

= 1,5 J

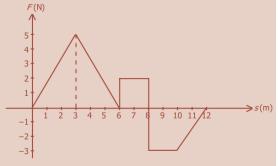
Ternyata dalam kehidupan sehari-hari, usaha yang bekerja pada benda tidak hanya dilakukan oleh satu gaya melainkan oleh beberapa gaya. Gaya-gaya tersebut misalnya gaya gesek, gaya normal dan gaya-gaya lainnya.

Bagaimana dapat menghitung usaha yang dilakukan oleh beberapa gaya?

Mudah saja, kita hanya perlu menjumlahkan gaya-gaya yang bekerja pada benda sehingga kita memperoleh usaha

 $Usaha = W_1 + W_2 + W_3 + \dots$ 3.4

Diskusikan dengan teman sebangku anda pernyataan berikut ini dengan menggunakan persamaan (4.1c).


Pernyataan:

Farita membawa buku yang sangat berat dan ia diam. Walaupun buku yang dibawanya sangat berat, menurut fisika ia tidak melakukan usaha atau W = 0. Mengapa?

LATIHAN

Kerjakan soal berikut dengan tepat!

- 1.Sebuah gaya sebesar 50 N bekerja pada sebuah peti dengan sudut 30°. Berapa besar usaha yang dilakukan gaya tersebut bila peti bergerak mendatar sejauh 6 meter?
- 2. Tiga orang anak sedang menarik sebuah koper sejauh 8 m. Apabila masing-masing anak mengeluarkan gaya sebesar 150 N, 165 N, dan 155 N dalam satu arah, berapakah usaha total yang meraka lakukan?
- 3. Hitunglah usaha yang dilakukan gaya F terhadap perpindahan seperti yang ditunjukkan grafik berikut!

Istilah energi bukanlah istilah yang asing bagi kita. Dalam beraktivitas seharihari kita selalu membutuhkan energy, baik ketika tidur, berjalan, menulis, membaca, dan sebagainya. Bukan hanya manusia, alat-alat seperti TV, kipas angin, mobil, dan lain sebagainya juga memerlukan energy untuk melakukan usaha. Jadi untuk melakukan usaha diperlukan sejumlah energy. Dengan begitu energy diartikan sebagai kemampuan untuk melakukan usaha.

Bentuk-bentuk energi bermacam-macam seperti energi mekanik, energi kimia, energi kalor, energi elektromagnetik, energi nuklir, dll. Bentuk-bentuk energi tersebut dapat berubah bentuk ke energi yang lain. Misalnya pada kipas angin, energi listrik diubah menjadi energi gerak. Selain bentuk energi, terdapat juga sumber energi yaitu energi Matahari, energi angin, energi air, energi fosil, energi gelombang, energi nuklir, dan energi panas bumi. Sumber energi juga dikelompokkan lagi menjadi dua: energi yang dapat diperbaharui dan energi yang tidak dapat diperbaharui. **Dapatkah kalian mengelompokkan sumber-sumber energi tersebut?**

A. Energi Kinetik

Energi kinetik adalah energi yang dimiliki oleh benda yang sedang bergerak. Adakah hubungan antara usaha yang dilakukan oleh gaya-gaya konstan dengan energi kinetik benda selama benda bergerak karena gaya tersebut?

Besaran apa saja yang berlaku pada **energi kinetik?** Lihatlah perbedaannya saat Wahyu melempar bola plastik ke barisan botol dengan kecepatan normal dan saat Wahyu melempar bola plastik ke barisan botol dengan kecepatan yang lebih daripada sebelumnya. Hal ini menunjukkan bahwa energi kinetik dipengaruhi oleh kecepatan benda.

Apabila bola plastic diganti dengan bola karet, apakah yang terjadi? Hal ini menunjukkan **energi kinetik juga dipengaruhi oleh massa benda**.

Secara matematis, energyi kinetik ditulis dalam persamaan

$$E_k = \frac{1}{2}mv^2 \qquad3.$$

Dengan;

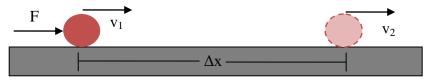
E_K: Energi kinetik (joule) m: massa benda (kg) v: kecepatan (m/s²)

CONTOH SOAL 2

1. Sebuah gaya konstan bekerja pada benda yang bermassa 1 kg yang mula-mula diam, sehingga setelah 2 sekon kecepatannya menjadi 4 m/s. Berapakah usaha yang dilakukan oleh gaya tersebut selama 2 sekon itu?

Penyelesaian:

2. Sebuah bola basket dengan massa 500 gram dilempar dengan laju 25 m/s. Berapa energi kinetiknya?


Penyelesaian:

Dik :
$$m = 500 \text{ kg}$$

 $v = 25 \text{ m/s}$
Dit : $E_K =$?
Jawab:
 $E_k = \frac{1}{2} mv^2 = \frac{1}{2}.500.25^2 = 156250 \text{ joule}$

Hubungan Usaha dan Energi

Misalnya sebuah balok yang mempunyai massa m bergerak dengan kecepatan awal v_o . Karena pengaruh gaya F, maka balok setelah t detik kecepatannya menjadi v_t dan berpindah sejauh s Karena kecepatannya bertambah maka energy kinetic pun ikut bertambah.

Pertambahan energy kinetic disebabkan oleh usaha yang dilakukan oleh gaya *F*. Dengan gambar dibawah ini akan lebih menjekaskan hubungan antara usaha dengan energy

Gambar 3.6 pengaruh gaya mengakibatkan perubahan kecepatan

Perubahan kecepatan awal v_1 menjadi kecepatan awal v_2 berhubungan dengan hasil kali a Δx sesuai dengan persamaan GLBB. Kita menggunakan GLBB karena a konstan.

$$v^{2} = v_{0}^{2} + 2a\Delta x$$

 $v^{2} - v_{0}^{2} = 2a\Delta x$
 $v_{2}^{2} - v_{1}^{2} = 2a\Delta x$, $sebab\ v_{0} = v_{1}\ dan\ v = v_{2}$
 $\left(\frac{v_{2}^{2} - v_{1}^{2}}{2}\right) = a\Delta x$ 3.7

persamaan dapat ununs

$$F\Delta x = m\left(\frac{v_2^2 - v_1^2}{2}\right)$$

$$F\Delta x = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

$$F\Delta x = E_{K2} - E_{K1}$$
3.8

Maka, hubungan usaha dan energi

Atau dapat dikatakan

Usaha yang dilakukan oleh gaya resultan yang bekerja pada benda saat dengan perubahan energi kinetik

CONTOH SOAL 3

1. Berapa usaha yang diperlukan untuk mempercepat sebuah mobil dengan massa 1500 kg dari kecepatan 20 m/s hingga 30 m/s?

Penyelesaian:

Dik : m = 1500 kg
$$v_2$$
= 30 m/s v_1 = 20 m/s Dit : W=....? Jawab:
$$W = E_{K2} - E_{K1}$$
$$= \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 = \frac{1}{2} .1500.30^2 - \frac{1}{2} .1500.20^2 = 675000 - 300000$$
$$= 375000 joule = 3,75 x 10^5 J$$

LATIHAN

Kerjakan soal berikut dengan tepat!

- 1.Pada temperature ruang, sebuah molekul oksigen, dengan massa 5.31×10^{26} kg, biasanya memiliki EK sekitar 6.21×10^{-21} J. Berapa cepat molekul tersebut bergerak?
- 2. Berapa usaha yang dibutuhkan untuk menghentikan elektron (m = 9,11 \times 10^{-31} kg) yang bergerak dengan laju 1,90 \times 10^6 m/s?
- 3. Berapa usaha yang diperlukan untuk mempercepat sebuah mobil dengan massa 1000 kg dari kecepatan 60 m/s hingga 80 m/s?

B. ENERGI POTENSIAL

Energi potensial diartikan sebagai energi yang dimiliki benda karena keadaan atau kedudukan (posisinya). Misalnya, energi pegas (per), energi ketapel, energi busur, dan energi air terjun. Selain itu, energi potensial juga dapat diartikan sebagai energi yang tersimpan dalam suatu benda .Misalnya energi kimia dan energi listrik

Misalnya, sebuah benda yang diangkat ke atas pada ketinggian h memiliki berat mg yang melawan arah gravitasi. Jika gaya ke atas + mg, maka usaha kita pada ketinggian h menjadi energi potensial gravitasi dengan harga negatif (-) dari usaha gaya gravitasi.

Contoh lainnya, sebuah pegas mempunyai energi potensial ketika ditekan (atau direntangkan) sebelum akhirnya kembali ke posisi keseimbangannya.

Energi potensial yang akan kita bahas kemudian yaitu energi potensial gravitasi dan energi potensial elastic

4.3 Energi Potensial Gravitasi

Energi potensial gravitasi adalah energi potensial suatu benda yang disebabkan oleh kedudukan benda terhadap gravitasi bumi. Sebagai contoh, jatuhnya buah kelapa dari pohon, maka enrgi potensialnya bergantung pada massa buah kelapa, ketinggian buah kelapadari tanah dan percepatan gravitasi.

Energi potensial gravitasi yang dimiliki sebuah benda bermassa m dengan percepatan gravitasi bumi $g=9.8 \text{ m/s}^2$ dan benda berada di ketinggian h dari tanah dinyatakan pada persamaan :

$$\mathbf{E}_{\mathbf{p}} = \mathbf{m}.\mathbf{g}.\mathbf{h} \qquad 3.10$$

Dalam menentukan energi potensial gravitasi, kita harus menentukan lebih dahulu bidang acuannya. Karena ketinggian benda bersifat relatif bergantung acuannya.

Bila terjadi perubahan ketinggian h_1 ke h_2 maka energi potensial gravitasi juga mengalami perubahan. Persamaan yang digunakan yaitu:

$$\Delta \mathbf{E}_{\mathbf{p}} = \mathbf{E}_{\mathbf{p}2} - \mathbf{E}_{\mathbf{p}1}$$
3.11

Kerjakan soal berikut dengan tepat!

1. Sebuah benda bermassa 5 kg diangkat dari tanah ke tempat setinggi 5 m di atas tanah. Tentukan energi potensial benda terhadap tanah dan tempat setinggi 2,5 m di atas tanah! $(g = 9,8 \text{ m/s}^2)$

PERCOBAAN

- 1. Siapkan bola bekel dan meteran.
- 2. Ukur ketinggian dari lantai setinggi 50 cm kemudian jatuhkan bola dan catat ketinggian pantulan bola
- 3. Ulangi percobaan dengan ketinggian yang berbeda.
- 4. Buatlah kesimpulan tentang hubungan energi potensial gravitasi dengan ketinggian.

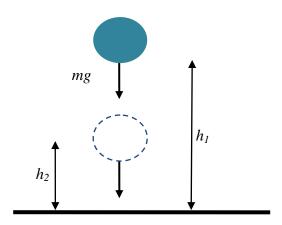
4.4 Energi POtensial Elastik

Energi potensial elastik adalah energi yang tersimpan dalam benda elastik ketika benda ditekan atau diregangkan. Benda-benda elastik itu misalnya tali karet busur, pegas dll. **Dapatkah kalian memberikan contoh yang lain?**

Kita mengambil contoh pegas sebagai benda elastik untuk dibahas pada materi ini. Pegas dapat menyimpan energi potensial elastik bila pegas diregangkan atau ditekan. Semakin besar regangan atau tekanan yang diberikan pada pegas maka semakin besar pula energi potensial yang tersimpan.

Pada pegas simpangan x diukur dari posisi kesetimbangannya, maka gaya pegas dinyatakan F = k x. Besar gaya pegas berbanding lurus dengan besar perubahan panjang pegas, maka besar energi potensial elastik yaitu:

PERCOBAAN


- I. Siapkan karet gelang , penggaris dan beban yang telah diukur massanya.
- 2. Ukur ketetapan gaya karet tersebut dengan persamaan $k=rac{mg}{\Lambda_X}$
- 3. Ax adalah perubahan panjang karet gelang saat ujungnya digantungkan sebuah beban bermassa m
- 4. Perkirakan energi potensial maksimum yang dapat disimpan karet

4.5 Hubungan Usaha dan Energi Potensial

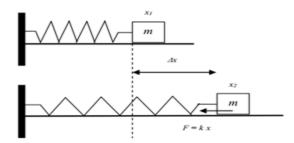
a. Usaha oleh gaya berat

Sebuah benda yang berada di ketinggian h_1 kemudian dilepaskan, maka benda akan bergerak hingga mencapai ketinggian h_2 . Hal ini diakibatkan adanya energi potensial gravitasi.

Gambar 3.7 Bola yang dilepaskan dari ketinggian h_1

Berdasarkan gambar diatas, perubahan energi potensial gravitasinya dapat ditentukan sebagai berikut.

Besar usaha yang dilakukan oleh gaya gravitasi konstan untuk berpindah dari ketinggian h_1 ke ketinggian h_2 dapat dirumuskan:


$$W = -mg(h_2 - h_1)$$
3.14

Atau bisa dikatakan bahwa,

Perubahan energi potensial gravitasi sama dengan harga negatif (-) dari usaha.

b. Usaha oleh gaya pegas

Pada pegas yang disimpangkan sejauh x dari posisi kesetimbangannya, besar gaya pegas F = k x

Gambar 3.8 Usaha yang dilakukan gaya pegas

Karena gaya F berlawanan dengan perpindahan pegas Δx, maka

$$\int dW = -\int_{1}^{2} F \, dx$$
$$W = -\int_{1}^{2} kx \, dx$$

Sehingga usaha yang dilakukan gaya pegas adalah

$$W = -\frac{1}{2}k (x_2^2 - x_1^2)$$

Atau bisa dikatakan bahwa

 $W = -\Delta E_{p} \qquad3.15$

4.6 Hukum Kekekalan Energi Mekanik

Kita telah mengenal bahwa hukum kekekalan energi adalah energi tidak dapat diciptakan ataupun dimusnahkan, tetapi dapat diubah menjadi bentuk energi lainnya. Misalnya, pada lampu energi listrik diubah menjadi energi cahaya. Apakah kalian tahu dari mana energi listrik tsb? Bahkan kita juga mengetahui, energi mekanik merupakan gabungan dari energi potensial dan energi kinetik.

$$\mathbf{EM} = \mathbf{E_p} + \mathbf{E_k}$$
3.16

Sebuah benda yang dilempar ke atas akan memiliki energi potensial dan energi kinetik. Energi potensial dimiliki karena ketinggiannya, sedangkan energi kinetik karena geraknya.

Pada pokok bahasan ini, kita akan mempelajari hubungan hukum kekekalan energi dengan dengan gaya konservatif. Apa itu gaya konservatif? Gaya konservatif adalah gaya yang tidak berubah terhadap lintasan yang ditempuh benda.

Apakah gaya gesekan termasuk gaya konservatif??? Jelaskan

Jika pada benda hanya bekerja gaya konservatif maka besarnya energi mekanik pada benda kekal. Pernyataan ini memiliki arti energi mekanik yang dimiliki benda pada setiap posisi tetap, sedangkan energi potensial dan energi kinetiknya berubah. Bisa juga dikatakan energi mekanik pada posisi awal E_{M1} sama dengan energi mekanik pada posisi akhir E_{M2} .

Pada pegas, hukum kekekalan energi mekanik dapat ditulis sebagai berikut

Gerak vertikal dapat kita menjadi dua yaitu gerak ke atas dan gerak vertikal ke bawah

a. Gerak vertikal ke atas

Berdasarkan Hukum kekekalan energi mekanik, pada gerak vertikal ke atas berlaku persamaan:

$$E_{K1} + E_{P1} = E_{K2} + E_{P2}$$

$$\frac{1}{2}mv_1^2 + 0 = 0 + mgh_{max}$$

Sehingga tinggi maksimum yang dapat dicapai benda adalah:

$$h_{max} = \frac{v_1^2}{2g}$$

Ket:

 $h_{max} = tinggi maksimum (m)$

 v_1^2 = kelajuan awal benda (m/s)

 $g = percepatan gravitasi (m/s^2)$

Selain mencari ketinggian maksimum yang dapat di capai benda, Hukum kekekalan energi mekanik dapat digunakan untuk mencari kelajuan benda saat berada pada ketinggian h. Ketia benda berada pada ketinggian h berlaku persamaan:

$$E_{K1} + E_{P1} = E_{K2} + E_{P2}$$

$$\frac{1}{2}mv_1^2 + 0 = \frac{1}{2}mv_2^2 + mgh_{max}$$

$$v_2^2 = v_1^2 - 2gh_{max}$$
3.19

b. Gerak Vertikal Ke bawah

Gerak vertikal ke bawah dibedakan menjadi 2, yaitu gerak tanpa kecepatan awal dan gerak dengan kecepatan awal. Untuk gerak tanpa kecepatan awal, disebut gerak jatuh bebas. Contoh gerak jatuh bebas adalah gerak benda yang dijatuhkan dari ketinggian tertnetu.

$$v = \sqrt{v_1^2 - 2gh} \qquad \dots 3.20$$

CONTOH SOAL 4

Sebuah benda yang bermassa 1,5 kg dijatuhkan bebas dari ketinggian 6 m dari atas tanah. Berapakah energi kinetik benda pada saat benda mencapai ketinggian 2 m dari tanah? ($g = 10 \text{ m/s}^2$)

Penyelesaian:

Diketahui: m = 1.5 kg; $h_1 = 6 \text{ m}$; $h_2 = 2 \text{ m}$; $g = 10 \text{ m/s}^2$; $V_1 = 0$

Ditanya: E_{k2}

Jawab:

 $E_{k1} + E_{p1} = E_{k2} + E_{p2}$

 $0 + m \cdot g \cdot h_1 = Ek + m \cdot g \cdot h_2$

 $90 = E_{k2} + 30$

 E_{k2} = 60 joule

LAGIHAN

Kerjakan soal berikut dengan tepat!

- 1. Sebuah bola bermassa 0,2 kg dilempar vertical ke atas dengan kelajuan awal kelajuan awal 10 m/s. Dengan menggunakan hukum kekekalan energy dan gesekan udara diabaikan, tentukan:
 - a. ketinggian maksimum yang dicapai bola
 - b. kelajuan bola saat bola berada pada ketinggian 3 meter

4.7 Daya

Kalian telah mengetahui bahwa suatu bentuk energy dapat berubah menjadi bentuk energy lainnya. Sebagai contoh PLTA yang memanfaatkan energy air yang mengalir untuk diubah menjadi energy listrik.

Secara umum, daya diartikan sebagai besarnya usaha yang dilakukan tiap satu satuan waktu atau perubahan energi tiap satuan waktu. Jadi, daya (P)

$$P = \frac{W}{t}$$
3.21

Satuan daya lainnya selain watt adalah *horse power (hp)*. Satuan ini sering digunakan untuk menyatakan daya yang dimiliki sebuah mesin.

$$1 \text{ hp} = 746 \text{ W}$$

CONTOH SOAL 5

Sebuah mesin traktor yang tertulis 20 pk digunakan selama 2 jam. Berapakah energi yang telah dikeluarkan traktor selama itu?

Penyelesaian

Diketahui: P = 20 pk = 14920 watt; t = 2 jam

Ditanya: W?
Jawab: W = P . t

 $= 14920 \times 2 = 29840 \text{ WH}$

= 29,840 KWH

Fiester

Fisikawan Kita

la seorang ahli fisika berkebangsaan Inggris. Lahir di Lancashire pada tanggal 24 Desember 1818 dan meninggal dunia di Chesire pada tanggal 11 Oktober 1889. Ia adalah penemu Hukum Joule, dan namanya diabadikan menjadi satuan energy. Joule pula yang dapat menunjukan bahwa kalor merupakan salah satu bentuk energy, dengan koversi 1 joule =0,24 kalori atau 1 kalori = 4,18 joule. Ia adalah murid John Dalton di Universitas Manchester. Bersama William Thomson (Lord Kelvin), ia menemukan efek Joule-Thomson.

RANGKUMAN

Usaha merupakan proses perubahan energi. Usaha didefinisikan sebagai hasil kali komponen gaya yang segaris dengan perpindahan dengan besarnya perpindahan: W= F.s

- Apabila gaya membentuk sudut tertentu terhadap arah horizontal, maka besarnya usaha: W= F.s cos .
- Usaha yang dilakukan oleh beberapa gaya yang bertitik tangkap sama merupakan jumlah aljabar dari usaha yang dilakukan masing-masing gaya.
 W= W₁+ W₂+ W₃+ ... + W_n
- Energi adalah kemampuan untuk melakukan usaha.
- Energi potensial gravitasi adalah energi yang dimiliki oleh benda karena kedudukan atau ketinggiannya.

Ep = m.g.h

- Usaha yang dilakukan oleh gaya berat merupakan perubahan energi potensial benda. W= Ep ' = -m.g (h_2-h_1)
- Energi kinetik adalah energi yang dimiliki benda karena geraknya.

$$E_k = \frac{1}{2}mv^2$$

Untuk gaya yang besarnya tetap, usaha yang dilakukan oleh gaya sama dengan perubahan energi kinetiknya.

$$E_K = E_{K2} - E_{K1} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

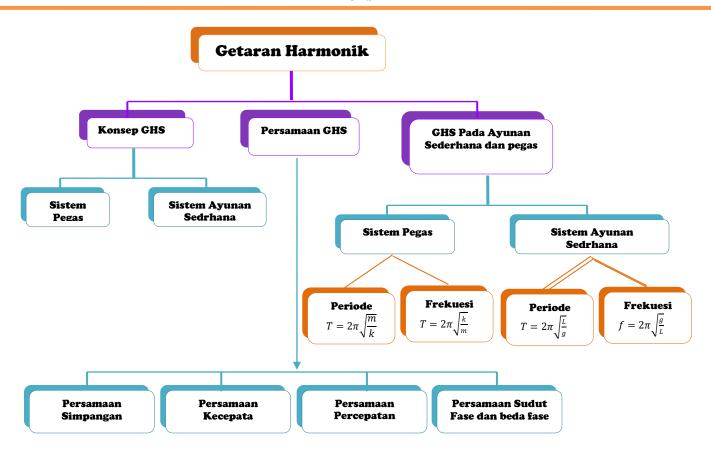
- Energi mekanik adalah jumlah energi potensial dan energi kinetik yang dimiliki oleh benda. Em= Ep+ Ek
- Hukum Kekekalan Energi Mekanik menyatakan bahwa dalam medan gravitasi, energi mekanik yang dimiliki oleh benda besarnya tetap.
 Em = konstan

$$EM_{1} = \Delta M_{2}$$

$$E_{P1} + E_{K1} = E_{P2} + E_{K2}$$

$$mgh_{1} + \frac{1}{2}mv_{1}^{2} = mgh_{2} + \frac{1}{2}mv_{2}^{2}$$

BAB 4


Gerak Harmonik Sederhana

Bermain ayunan selalu dapat menimbulkan keceriaan tersendiri. Hanya sekali dorongan, setelah dilepas akan berayun berulang kali. Sebenarnya ayunan dibahas dalam ilmu fisika, dari ayunan tersebut dimana kita dapat menghitung periode dan juga kita dapat menghitung berapa besar gravitasi bumi suatu tempat. Untuk dapat memahaminya mari kita bahas dalam materi hah ini!

Selain pada ayunan, getaran juga bisa terjadi pada pegas. Bagaimana getaran pada pegas? Suatu benda yang bermassa m digantungkan pada sebuah pegas spiral, kemudian ditarik ke bawah, lalu dilepaskan. Akibat sifat elastis pegas dan sifat lembam benda, maka benda itu akan bergerak naik turun melalui kedudukan setimbang sepanjang lintasan berbentuk garis lurus, yang dinamakan gerak getaran tunggal.

PETA KONSEP

Kata Kunci

- Bandul, dan Pegas
- Periode, frekuensi, Fase, dan sudut fase
- Simpangan, kecepatan, percepatan

Kalian tentu sering mendengar kata getaran atau biasa disebut gerak harmonis. Gerak harmonis adalah gerak bolak-balik yang melalui lintasan yang sama secara periodik. Contoh gerak harmonis ini adalah ayunan anak-anak, gerak bandul jam dan getaran pegas.

1. Gaya Pemulih

a. Gaya Pemulih Pada Ayunan Bandul

Ayunan matematis merupakan suatu partikel massa yang bergantung pada suatu titik tetap pada seutas tal, dimana massa tali dapat diabaikan dan tali tidak dapat bertambah panjang. Terdapat sebuah beban bermassa m bergantung pada seutas kawat halus sepanjang l dan massanya dapat diabaikan. Apabila bandul itu bergerak vertical dengan membentuk sudut θ , gaya pemulih bandul tersebut adalah mg sin θ . Secara matemais dapat ditulis:

 $F = mg \sin \theta$

b. Gaya Pemulih pada Pegas

Pegas adalah salah satu contoh benda elastic. Oleh sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali pada keadaan setimbangnya mula-mula apabila gaya yang bekerja padanya dihilangkan. Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan seharihari. Misalnya didalam *shockbreaker* dan *springbed*. Pegas-pegas yang tersusun dalam *springbed* akan memberikan kenyamanan saat orang tidur. Gaya pemulih yang dilakukan pada pegas:

$$F = -kx$$

2. Periode dan frekuensi Getaran Harmonis

a. Periode dan Frekuensi Sitem Pegas

Mengapa benda yang bergetar cenderung kembali ke titik setimbang?

Jika kalian cermati penjelasan pada persamaan getaran maka kalian dapat menemukan ciri dari gerak benda yang bergetar. Benda akan bergetar apabila dipengaruhi gaya yang memiliki arah selalu ke titik seimbangnya (bukan simpangannya). Periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih

$$F = -ky \qquad \dots$$

Dari persamaan 3.10 dan 3.11 inilah dapat diten-tukan periode dan frekuensi getaran. Cermati substitusi berikut

$$F = -ky$$

$$ma = -ky$$

$$m(-\omega^2 y) = -ky$$

$$m\omega^2 = k$$

$$\omega = \sqrt{\frac{k}{m}}$$
iperoleh periode getar

 $\omega = \sqrt{\frac{k}{m}}$ Dengan substitusi $\omega = \frac{2\pi}{T}$, dapat diperoleh periode getaran

$$\frac{2\pi}{T} = \sqrt{\frac{k}{m}}$$

$$T = 2\pi \sqrt{\frac{m}{k}}, atau f = 2\pi \sqrt{\frac{k}{m}}$$
......4.2

$$f = \frac{1}{T}$$
4.3

Dari persamaan 4.2 dapat diketahui bahwa periode T dan frekuensi f getaran pegas hanya dipengaruhi massa beban dan konstanta gaya pegas.

b. Periode dan Frekuensi Bandul Sederhana

Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat.

$$\Sigma F = ma$$

$$-mg \sin \theta = ma$$
.....4.

dituliskan;

$$-mg\frac{Y}{L} = ma$$

$$a = -\frac{g}{L}Y$$

$$4.5$$

Ingat, persamaan getaran selaras;

$$Y = A \sin \omega t$$

 $v = \frac{dy}{dt} = A\omega \cos \omega t$, dan $a = \frac{dv}{dt} = -A\omega^2 \sin \omega t$
 $a = -A\omega^2 \sin \omega t$
 $a = -\omega^2 Y$ 4.6

Apabila persamaan (4.6) disubtitusikan ke persamaan (4.5) akan diperoleh

$$-\omega^2 Y = -\frac{g}{L}$$

$$\omega^2 = \frac{g}{L}, ingat \ \omega = 2\pi f = \frac{2\pi}{T}$$

$$\frac{4\pi^2}{T^2} = \frac{g}{L}$$

$$T^2 = 4\pi^2 \frac{L}{g}$$

$$T = \sqrt{4\pi^2 \frac{L}{g}}$$

$$T=2\pi\sqrt{rac{L}{g}}$$
, atau $f=2\pi\sqrt{rac{g}{L}}$

4 7

Dengan;

T = Periode(s)

L = Panjang tali (m)

 $g = percepatan gravitasi (m/s^2)$

f = frekuensi (Hz)

m = massa benda (kg)

k = konstanta pegas

> Sudut Fase, Fase, dan Beda Fase Gerak Harmonis Sederhana

Besar sudut dalam fungsi sinus disebut sudut fase (θ). **Sudut fase** dalam gerak harmonik dirumuskan sebagai berikut:

$$\theta = \omega t + \theta_0 = \frac{2\pi}{T} + \theta_0$$

$$\theta = 2\pi f t + \theta_0$$

4.8

Fase (ϕ) dalam gerak harmonik dirumuskan berikut.

$$\varphi = \frac{\theta}{2\pi} = \frac{t}{T} + \frac{\theta_0}{2\pi} \qquad \dots$$

4.9

Beda fase ($\Delta \varphi$) dirumuskan:

$$\Delta \varphi = \varphi_2 - \varphi_1$$

$$= \left(\frac{t_2}{T} + \frac{\theta_0}{2\pi}\right) - \left(\frac{t_1}{T} + \frac{\theta_0}{2\pi}\right)$$

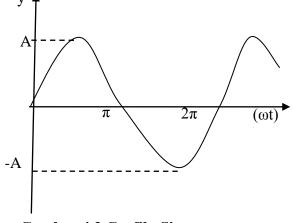
$$= \frac{t_2}{T} - \frac{t_1}{T}$$

$$\Delta \boldsymbol{\varphi} = \frac{t_2 - t_1}{T} = \frac{\Delta t}{T} \quad \cdots$$

4.10

Dengan;

 θ = sudut fase


 φ = Fase

 $\Delta \varphi$ = beda fase

3. Persamaan Getaran

A. Simpangan Getaran

Simpangan getaran adalah jarak benda yang sedang bergetar terhadap titik setimbang. Seperti pada gambar 4.2. Bentuknya memenuhi fungsi sinus. Berarti persamaan simpangan getarnya memenuhi fungsi berikut.

 $y = A \sin \omega t$

Gambar 4.2 Grafik Simpangan

B. Kecepatan Getaran

Kecepatan getar dapat diturunkan dari deferensial simpangnya.

$$v = \frac{dy}{dt} = \frac{d}{dt} (A \sin \omega t)$$

$$v = \omega A \cos \omega t$$
4.12

Kecepatan maksimum dirumuskan:

Hubungan antara kecepatan, amplitudo, dan simpangan pada gerak harmonis sederhana sebagai berikut:

 $v = \omega \sqrt{A^2 - Y^2} \qquad \qquad 4.14$

C. Percepatan Getaran

Percepatan getar dapat diturunkan dari deferensial kecepatan getarnya.

$$a = \frac{dv}{dt} = \frac{d}{dt} (\omega a \cos \omega t)$$

$$a = -\omega^2 A \sin \omega t$$
4.15

Dari persamaan 4.5 dapat dilihat nilai A sin t yang dapat diganti dengan y. Berarti percepatan getar memenuhi hubungan seperti berikut.

$$a = -\omega^2 y \qquad \qquad 4.16$$

Tanda negative menunjuan bahwa arah percepatan selalu berlawanan dengan arah simpangan. Percepatan maksimum gerak harmonis sederhana dirumuskan:

$$a = -\omega^2 \qquad \qquad 4.17$$

Dengan, y = simpangan (m) A= amplitude (m)

```
ω= frekuensi sudut

v = kecepatan (m/s)

a = percepatan (m/s<sup>2</sup>)

φ = \frac{t}{T} = fase getaran
```

CONTOH SOAL

- 1. Sebuah benda bergetar harmonik bermula dari titik setimbang dengan frekuensi 10 Hz dan mempunyai amplitodo 10 cm dan setelah bergerak selama 0,025 sekon . Tentukan
 - a. simpangan getarnya

c. percepatan getarnya

b. kecepatan getarnya

Penyelesaian:

Dik:
$$f = 10 \text{ Hz}$$
 $A = 10 \text{ cm} = 0.1 \text{ m}$ $t = 0.025 \text{ s}$
Dit: a. $y = \dots$? c. $a = \dots$?
b. $v = \dots$?
Jawab:
a. $y = A \sin \omega t = A \sin 2\pi f t$
 $= 0.1 \cdot \sin 2\pi 10.0,025$
 $= 10 \sin(0.5\pi) = 10 \times 1 = 10 \text{ cm} =$

- b. $v_y = \omega A \cos \omega t = 2\pi f A \cos 2\pi f t$ = $2\pi 10.10 \cos(2\pi .10 x 0.025)$ = $200\pi \cos(0.5\pi)$
 - $= 200\pi \cos(0.5\pi)$ $= 200\pi \times 0 = 0 \text{ cm/s}$
- c. $a_y = -\omega^2 A \sin \omega t = (-2\pi f)^2 A \sin 2\pi f t$ $= (-2\pi 10)^2 10. \sin 2\pi 10.0,025$ $= -4\pi 100.10. \sin 2\pi 10.0,025$ $= -4\pi^4 x 10^3. \sin(0,5\pi)$ $= -4\pi^4 x 10^2 m/s^2$

LATIHAN

Setelah memahami contoh di atas dapat kalian coba soal berikut. Sebuah beban yang bergetar bersamaan pegas me-miliki frekuensi Hz. Simpangan maksimumnya 8 cm. Setelah bergetar 3s tentukan:

- a. simpangan getar,
- b. kecepatan getar,
- c. percepatan getar!

4.2 Energi Pada Gerak Harmonis

Energi yang dimiliki oleh benda yang bergetar harmonik terdiri dari energi kinetik, energi potensial dan energi mekanik. Energi kinetik disebabkan adanya kecepatan, energi potensial disebabkan adanya simpangan atau posisi yang berubah-ubah dan energi mekanik merupakan jumlah energi kinetik dan energi potensial.

C. Energi Kinetik

Energi yang dimiliki oleh benda yang bergerak, bila massa benda m dan kecepatan benda v maka energi kinetik benda tersebut adalah

$$E_k = \frac{1}{2}mv^2$$

Kecepatan yang dimiliki oleh getaran harmonic $v = \omega A \cos \omega t$. Sehingga energi kinetik getaran harmonik adalah sebagai berikut

$$E_K = \frac{1}{2}mv^2$$

$$E_K = \frac{1}{2}m(\omega A \cos \omega t)^2, maka$$

$$E_K = \frac{1}{2}m(\omega^2 A^2 \cos^2(\omega t))$$

.....4.17

Apabila getaran harmonis terjadi pada pegas maka $k=m\omega^2$, sehingga energi kinetiknya dapat dinyatakan sebagai berikut.

$$E_K = \frac{1}{2}m(\omega^2 A^2 \cos^2 \theta)$$
.....4.18

D. Energi Potensial (E_P)

Pada saat pegas disimpangkan sejauh x, maka pegas mempunyai energi potensial

$$E_P = \frac{1}{2}kx^2$$

Simpangan yang dimiliki oleh getaran harmonik adalah $x = A \sin(\omega t)$ Sehingga energi potensial getaran harmonik dapat dinyatakan sebagai berikut.

$$E_{P} = \frac{1}{2}k (A \sin \omega t)^{2}$$

$$E_{P} = \frac{1}{2}k(A^{2} \sin^{2}(\omega t))$$

Kita ketahui $k=m\omega^2$, maka energi potensial getaran harmonic menjadi seperti berikut:

$$E_P = \frac{1}{2}m\omega^2(A^2\sin^2\theta)$$

Keterangan:

E_p: energi potensial getaran harmonik (J)

k: konstanta getaran (N/m)

E. Energi Mekanik

Energi mekanik adalah jumlah energi kinetik dan energi potensial.

$$E_M = E_K + E_P$$

$$= \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t) + \frac{1}{2}mA^2 \sin^2(\omega t)$$

$$= \frac{1}{2}m\omega^2 A^2 [\cos^2(\omega t) + \sin^2(\omega t)]$$

Karena $\cos^2(\omega t) + \sin^2(\omega t) = 1$, maka energi mekanik getaran harmonik dapat dinyatakan sebagai berikut.

 $E_M = \frac{1}{2}kA^2 \tag{4.21}$

CONTOH SOAL 2

1. Sebuah benda yang massa 1 kg bergetar harmonik dengan amplitude 4 m dan frekuensinya 5 Hz. Hitunglah energi kinetik, energi potensial,dan energi mekaniknya pada saat simpangannya 2 m Penyelesaian:

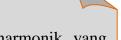
A = 4 mf = 5 Hzx = 2 mDik : m = 1 kgDit:

a. $E_{K} =$? b. $E_P =$?

c. $E_M = \dots$?

Jawab:

a.
$$E_K = \frac{1}{2}m(\omega^2 A^2 \cos^2(\omega t)) = \frac{1}{2}m \omega^2 A^2 [1 - \sin^2(\omega t)]$$
$$= \frac{1}{2}m\omega^2 [A^2 - A^2 \sin^2(\omega t)]$$
$$= \frac{1}{2}m\omega^2 [A^2 - x^2]$$
$$= \frac{1}{2} \cdot 1 (2\pi 5)^2 [4^2 - 2^2]$$
$$= 0.5 \times 100\pi^2 \times 12$$
$$= 600\pi^2 J$$


b.
$$E_P = \frac{1}{2}m\omega^2 A^2 \sin^2(\omega t) = \frac{1}{2}m\omega^2 x^2$$
 c. $E_M = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2$
 $= \frac{1}{2} \cdot 1 (2\pi x 5)^2 x 2^2$ $= \frac{1}{2} \cdot 1 (2\pi x 5)^2 x 4^2$
 $= 0.5 x 100\pi^2 x 4$ $= 0.5 x 100\pi^2 x 16$
 $= 200\pi^2 J$ $= 800\pi^2 J$

Setelah memahami contoh di atas dapat kalian coba soal berikut.

Balok kecil bermassa 100 gr digantungkan pada ujung pegas. Kemudian balok ditarik sejauh 15 cm dan dilepaskan. Balok bergetar turun naik dengan periode 0,1s. Pada saat simpangannya 12 cm tentukan : energi mekanik, energi potensial, energi kinetik dan cepat getarnya!

RANGKUMAN

Periode adalah waktu yang diperlukan untuk satu siklus gerak harmonik yang besarnya:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Frekuensi adalah jumlah siklus gerak harmonik yang terjadi tiap satuan waktu.

$$f = 2\pi \sqrt{\frac{k}{m}}$$

Simpangan pada grafik harmonik sederhana dinyatakan:

$$y = A \sin\left(2\pi \frac{t}{T}\right)$$

Kecepatan pada gerak harmonik merupakan turunan pertama dari persamaan simpangan:

 $v = \omega A \cos \omega t$

Percepatan merupakan turunan pertama dari persamaan kecepatan.

$$a = -\omega^2 A \sin \omega t$$

Benda yang melakukan gerak harmonik memiliki energi potensial dan energi kinetik yang besarnya

$$E_K = \frac{1}{2}m(\omega^2 A^2 \cos^2(\omega t), dan \ E_P = \frac{1}{2}m\omega^2(A^2 \sin^2\theta)$$

Energi mekanik adalah jumlah energi potensial dan energi kinetik.

$$E_M = \frac{1}{2}kA^2$$

A. UNIT 1 USAHA

Hari/Tanggal:

Kelompok :

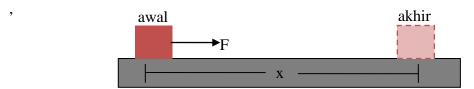
Anggota : 1.

2.

3.

4.

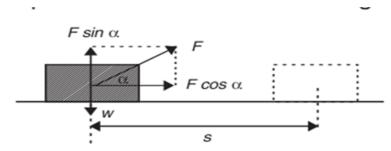
5.


A. TEORI

Pengertian usaha dalam fisika tidak bisa dipisahkan dengan gaya dan perpindahan. Seseorang atau suatu benda dikatakan melakukan usaha jika

padanya ditemukan gaya dan perpindahan. Coba kalian lihat Gambar 3.1. Seseorang sedang mendorong mobil. orang tersebut melakukan usaha jika orang tersebut memberi gaya pada mobil dan mobil dapat bergeser sejajar gayanya. Dalam fisika, usaha adalah hasil kali

perpindahan dengan gaya yang menyebabkannya. Gaya yang dimaksud ini adalah gaya yang searah atau segaris dengan perpindahan.



Gambar 3.2 Usaha dengan gaya F searah dengan perpindahan

Sehingga secara matematis, usaha dituliskan:

Apabila ada gaya yang bekerja pada sebuah benda, akibat gaya tersebut benda bergerak sejauh x, sedangkan gaya tersebut membentuk sudut θ dengan arah perpindahan Δx lihat gambar 3.3,

Gambar 3.2 Gaya F yang diberikan membentuk sudut

Sehingga dapat dirumuskan:

dengan : W = usaha (joule)

F = gaya(F)

S = jarak tempuh (m)

α= sudut antara gaya F dengan perpindahan S

Usaha dalam fisika hanya dilakukan oleh gaya yang bekerja pada benda agar benda mengalami perpindahan

B. TUJUAN

Setelah melakukan percobaan/pengamatan peserta didik diharapkan dapat:

- 1. Mengetahui faktor-faktor yang mempengaruhi usaha.
- 2. Menganalisis hubungan antara gaya, perpindahan dan usaha
- 3. Menyimpulkan konsep usaha dalam fisika.

C. KASUS

Coba amati gambar disamping!!! Sebuah mobil yang sedang mogok, sehingga didorong oleh beberapa orang anak yang ukuran badan dan tenaganya sama.

Berdasarkan dari kasus tersebut, Apa yang terjadi dengan mobil diatas saat didorong oleh beberapa anak tersebut?

Jawa	ab:	 	 		 		 			 	 		 			 	 		 	 		 		 	 	
		 	 	 		 _	 	 																		

KASUS 2
1. Ambillah sebuah buku temanmu, lalu letakkan di atas mejamu
2. Doronglah meja tulismu sampai berpindah tempat
3. Doronglah dinding kelasmu sekuat tenaga seperti pada gambar berikut!
Pertanyaan: 1. Deri kasus 2. No 2 anakah tariadi usaha? Kamukakan alasanmut
1. Dari kasus 2 No.2 apakah terjadi usaha? Kemukakan alasanmu!
jawab:
••••••
Dalam fisika, apakah mendorong sebuah dinding dikatakan melakukan
usaha? Kemukakan Alasanmu!

2. Dari kasus tersebut faktor apakah yang mempengaruhi usaha ? jawab:....

.....

jawab:.....

.

3.	Dari	jawaban	No	2,	bagaimana	hubungan	antara	keduanya
	Jawa	b:						

Kesimpulan

Apa yang dapat kalian simpulkan berdasarkan dari demostrasi yang kalian telah lakukan?

UNIT 2 ENERGI

Hari/Tanggal :

Kelompok :

Anggota : 1.

2.

3.

4.

5.

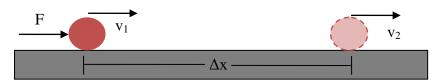
A. TEORI

Istilah energi bukanlah istilah yang asing bagi kita. Dalam beraktivitas sehari-hari kita selalu membutuhkan energy, baik ketika tidur, berjalan, menulis, membaca, dan sebagainya. Bukan hanya manusia, alat-alat seperti TV, kipas angin, mobil, dan lain sebagainya juga memerlukan energy untuk melakukan usaha. Jadi untuk melakukan usaha diperlukan sejumlah energy. Dengan begitu energy diartikan sebagai kemampuan untuk melakukan usaha.

Bentuk-bentuk energi bermacam-macam seperti energi mekanik, energi kimia, energi kalor, energi elektromagnetik, energi nuklir, dll. Bentuk-bentuk energi tersebut dapat berubah bentuk ke energi yang lain. Misalnya pada kipas angin, energi listrik diubah menjadi energi gerak. Selain bentuk energi, terdapat juga sumber energi yaitu energi Matahari, energi angin, energi air, energi fosil, energi gelombang, energi nuklir, dan energi panas bumi. Sumber energi juga dikelompokkan lagi menjadi dua: energi yang dapat diperbaharui dan energi yang tidak dapat diperbaharui.

1. Energi Kinetik

Energi kinetik adalah energi yang dimiliki oleh benda yang sedang bergerak. Misalnya saat Wahyu melempar bola plastik ke barisan botol dengan kecepatan normal dan saat Wahyu melempar bola plastik ke barisan botol dengan kecepatan yang lebih daripada sebelumnya. Hal ini menunjukkan bahwa energi kinetik dipengaruhi oleh kecepatan benda.


Apabila bola plastik diganti dengan bola karet, apakah yang terjadi? Hal ini menunjukkan energi kinetik juga dipengaruhi oleh massa benda. Secara umum, energi kinetik dapat dirumuskan:

$$E_k = \frac{1}{2}mv^2 \qquad3.3$$

Hubungan Usaha dan Energi

Misalnya sebuah balok yang mempunyai massa m bergerak dengan kecepatan awal v_o . Karena pengaruh gaya F, maka balok setelah t detik kecepatannya menjadi v_t dan berpindah sejauh s Karena kecepatannya bertambah maka energy kinetic pun ikut bertambah.

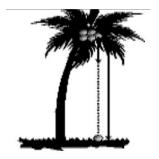
Pertambahan energy kinetic disebabkan oleh usaha yang dilakukan oleh gaya F. Dengan gambar dibawah ini akan lebih menjelaskan hubungan antara usaha dengan energy

Gambar 3.5 pengaruh gaya mengakibatkan perubahan kecepatan


Benda tersebut bergerak sejauh x. Menurut hukum II Newton, gaya konstan F akan mempercepat benda F=ma. Jika ruas kiri dan ruas kanan dikalikan dengan Δx , maka:

Perubahan kecepatan awal v_1 menjadi kecepatan awal v_2 berhubungan dengan hasil kali a Δx sesuai dengan persamaan GLBB. Kita menggunakan GLBB karena a konstan. Persamaan dapat ditulis

Maka, hubungan usaha dan energy


2. ENERGI POTENSIAL

Apakah kalian sudah tahu tentang energi potensial? Energi potensial adalah energi yang disebabkan oleh ketinggiannya. Contohnya seperti pada Gambar 3.6. Semua benda dititik A, B, C, dan D bermassa sama, tetapi ketinggiannya berbeda sehingga energi

potensialnya berbeda. Massa A memiliki energi potensial terbesar dan massa D memiliki energi potensial terkecil. Energi potensial juga dipengaruhi oleh massa benda. Semakin besar massanya maka energinya semakin besar. Sehingga energi potensial dapat dirumuskan sebagai berikut: $E_p = m.g.h$

.....3.

Hubungan Usaha dan Energi

Coba kalian perhatikan buah kelapa yang jatuh dari pohonya seperti pada Gambar 4.7. Dari titik awal A buah kelapa memiliki energi potensial sebesar *mgh*. Tetapi saat jatuh buah kelapa

7

bekerja gaya berat W=mg. Berarti benda yang jatuh akan melakukan kerja. Besar usaha ini ternyata sama dengan perubahan energi potensialnya. $E_{PA}=$ mgh dan $E_{PB}=0$. Berarti berlaku konsep pada benda yang bergerak dan berubah ketinggiannya akan melakukan usaha sebesar perubahan energi potensialnya.

 $\mathbf{W} = -\Delta \mathbf{E}_{\mathbf{p}}$

B. TUJUAN

Setelah melakukan percobaan atau pengamatan peserta didik diharapkan dapat mengamati pengaruh massa dan ketinggian benda terhadap perubahan bentuk plastisin/tanah liat.

C. ALAT DAN BAHAN

- Plastisin/tanah liat secukupnya
- Kelerang/bola yang massanya sama 2 buah
- Kelerang/bola yang massanya berbeda 1 buah

D. LANGKAH KERJA

- 1. Letakkan dua bagian plastisin/tanah liat di atas lantai
- 2. Jatuhkan dua kelereng/bola yang massanya berbeda dari ketinggian 30 cm! (Masing-masing kelereng/bola harus mengenai tepat di atas tanah liat/plastisin). Amati perubahan bentuk plastisin/tanah liat setelah terbentur kelereng/bola!
- 3. Ulangi langkah 1–3 dengan dua kelereng/bola yang massanya sama!
- Jatuhkan satu bola dari ketinggian 30 cm dan bola lainnya dari ketinggian
 15 cm meter. Amati perubahan tanah liat terbentur bola
- 5. Catat hasil pengamatan dalam tabel pengamatan

Tabel 1. Untuk massa berbeda dengan ketinggian sama

No	Nama Benda	Massa Benda	Ketinggian	Kedalaman Tanah liat
1				
2			30 cm	
3				

Tabel 2. Untuk massa sama dengan ketinggian berbeda

No	Nama Benda	Massa Benda	Ketinggian	Kedalaman Tanah liat
1				
2				
3				

6.	Bandingkan 2 percobaan di atas
7.	Adakah pengaruh massa pada perubahan bentuk tanah liat?
	Jawab:

8.	Adakah pengaruh ketinggian terhadap bentuk tanah liat/plastisin?
	Jawab:
9.	Bagaimana hubungan antara massa kelereng (m) dan ketinggian (h) dengan perubahan bentuk plastisin/tanah liat.
10.	Diskusi
	Diskusikan dengan teman kelompok kalian!
11.	Kesimpulan
•	Apa yang dapat kalian simpulkan dari percobaan yang telah dilakukan?
	The June capat manual simpointain duri percocuair June teluir dilukukuir.

UNIT 3 HUKUM KEKEKALAN ENERGI MEKANIK

Hari/Tanggal:

Kelompok :

Anggota : 1.

2.

3.

4.

5.

A. TEORI

Kita telah mengenal bahwa hukum kekekalan energi adalah energi tidak dapat diciptakan ataupun dimusnahkan, tetapi dapat diubah menjadi bentuk energi lainnya. Misalnya, pada lampu energi listrik diubah menjadi energi cahaya. Apakah kalian tahu dari mana energi listrik tsb? Bahkan kita juga mengetahui, energi mekanik merupakan gabungan dari energi potensial dan energi kinetik. Misalnya, sebuah benda yang dilempar ke atas akan memiliki energi potensial dan energi kinetik. Energi potensial dimiliki karena ketinggiannya, sedangkan energi kinetik karena geraknya. Sehingga dapat dirumuskan:

$$\mathbf{EM} = \mathbf{E_p} + \mathbf{E_k}$$

Jika pada benda hanya bekerja gaya konservatif maka besarnya energi mekanik pada benda kekal. Pernyataan ini memiliki arti energi mekanik yang dimiliki benda pada setiap posisi tetap, sedangkan energi potensial dan energi kinetiknya berubah. Bisa juga dikatakan energi mekanik pada posisi awal EM₁ sama dengan energi mekanik pada posisi akhir EM₂.

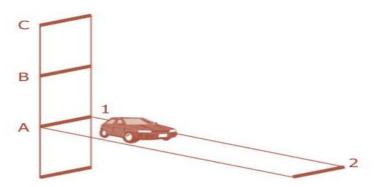
$$EM_1 = \Delta M_2$$

$$E_{P1} + E_{K1} = E_{P2} + E_{K2}$$

$$mgh_1 + \frac{1}{2}mv_1^2 = mgh_2 + \frac{1}{2}mv_2^2$$
3.10

B. TUJUAN

 Melalui percobaan hukum kekekalan energi mekanik peserta diidk dapat menyebutkan bunyi hukum kekekalan energi mekanik -


- Melalui percobaan hukum kekekalan energi mekanik peserta didik dapat menentukan energi mekanik benda yang meluncur

A. Alat dan Bahan

- 3 buah mobil mainan dengan massa berbeda
- Papan Luncur
- Meteran
- Stopwatch
- Balok
- Kayu Penyangga

B. Langkah Kerja

 Sediakan alat dan bahan, kemudian susunlah alat sesua dengan pada gambar berikut.

- 2. Pada papan luncur, tandai garis start dan garis finish. Kemudian ukurlah jarak kedua garis tersbut
- 3. Tempatkan papan luncur pada balok penyangga pada posisi A.
- 4. Lepaskan mobil mainan dari garis start, kemudian catatlah waktu yang diperlukan untuk mencapai garis finis.
- 5. Ulangilah sebanyak tiga kali, kemudian hitunglah waktu rata-ratanya.
- 6. Ulangilah langkah 3 5 untuk papan luncur pada balok penyangga pada posisi B dan C.
- 7. Hitunglah besarnya energi mekanik (Em) = Ep + Ek, tanpa menghiraukan kemiringan papan luncur, dan catatlah dengan mengikuti format tabel berikut ini.

Panjang lintasan s= ... m, m= ... kg.

Posisi	Ketinggia n h (m)	Ketinggia Waktu		ut (s	s)	Kelaju	Energy	Energy	Energi
papan		t.	t.	t.	t	an v	kinetik	potensial	Mekanik E _M
luncur		t_1	t_2	t ₃	ι	(m/s)	$\mathbf{E}_{\mathbf{k}}\left(\mathbf{J}\right)$	$\mathbf{E}_{\mathbf{P}}(\mathbf{J})$	(J)
$\mathbf{A_1}$									
$\mathbf{A_2}$									
B ₁									
\mathbf{B}_2									
C ₁									
C ₂									

8.	Di manakah posisi mobil mainan sehingga Ek= 0 ?						
	Jawab:						
	Mengapa demikian?						
9.	Di manakah posisi mobil mainan sehingga Ep= 0 ?						
	Jawab:						
	Mengapa demikian?						

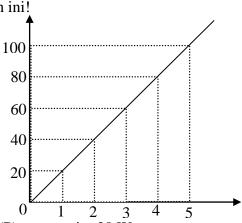
10. Tulislah bunyi Hukum Kekekalan Energi Mekanik!

UNIT 4 DAYA

A. TEORI

Daya diartikan sebagai laju dalam suatu usaha. Karena usaha terjadi seiring dengan perubahan energi, maka daya juga didefenisikan sebagai perubahan laju energi dari satu bentuk ke bentuk lainnya. Konsep daya diberikan untuk menyatakan besarnya usaha yang telah dilakukan dalam satuan waktu.

B. TUJUAN


Melalui percobaan peserta didik dapat menganalsis hubungan antara usaha, waktu, dan daya

C. Alat dan Bahan

Buku paket fisika

D. Kegiatan

Perhatikan grafik di bawah ini!

Grafik di atas besar daya (P) tetap, yaitu 20 W.

Isikanlah besar usaha (W), waktu (t), dan daya (P) dalam tebel di bawah ini

No	Usaha W (joule)	Waktu t (sekon)	Daya P (watt)
1			
2			
3			
4			
5			

Pertanyaan

Dari table diatas:

1.	Tentukan hubungan antara W, t, dan P
	Jawab:
2.	Jika ditulis dalam bentuk persamaan, bagaimana rumus daya tersebut?
	Jawab:
3.	Berdasarkan jawaban di atas, buatlah defenisi daya!
	Jawab:
4.	Berdasarkan table di atas, apakah satuan daya dalam SI?
	Jawab:
DI	SKUSIKAN
Jik	a mesin A dapat melakukan usaha sebesar 200 joule dalam waktu 40 sekor
daı	n mesin B dapat melakukan usaha 25 joule dalam waktu 2 sekon, mesir
ma	unakah yang memiliki daya terbesar?
Jav	vab:

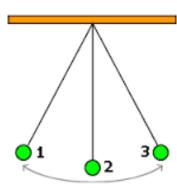
UNIT 1

(GERAK HARMONIS SEDERHANA PADA AYUNAN BANDUL)

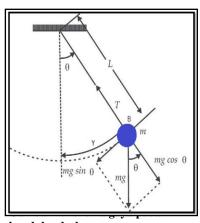
Hari/Tanggal:

Kelompok :

Anggota : 1.


2.

3.


4.

5.

A. TEORI

Gambar 4.1 Bandul sederhana yang berosilasi

bandul sederhana

Beban yang diikat pada ujung tali ringan yang massanya dapat diabaikan disebut bandul. Jika beban ditarik kesatu sisi, kemudian dilepaskan maka beban akan terayun melalui titik keseimbangan menuju ke sisi yang lain. Bila amplitudo ayunan kecil, maka bandul sederhana itu akan melakukan getaran harmonik. Bandul dengan massa m digantung pada seutas tali yang panjangnya l. Ayunan mempunyai simpangan anguler θ dari kedudukan seimbang. Gaya pemulih adalah komponen gaya tegak lurus tali.

$$F = mg \sin \theta$$

.....4.1

$$F = m \ a$$
, maka
 $mg \sin \theta = ma$
 $a = g \sin \theta$

Untuk getaran selaras θ kecil sekali sehingga $\sin \theta = \frac{Y}{I}$, sehingga persamaan bisa dituliskan;

$$-mg\frac{Y}{l} = ma$$

$$a = -\frac{g}{l}Y \qquad4.2$$

Dengan persamaan periode getaran harmonik:

$$T^{2} = 4\pi^{2} \frac{l}{g}$$

$$T = \sqrt{4\pi^{2} \frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{l}{g}}, atau f = 2\pi \sqrt{\frac{g}{l}}$$
.....4.3

Dimana:

l =panjang tali (meter)

g= percepatan gravitasi (ms⁻²)

T= periode bandul sederhana (s)

Dari rumus di atas diketahui bahwa periode bandul sederhana tidak bergantung pada massa dan simpangan bandul, melainkan hanya bergantung pada panjang dan percepatan gravitasi, yaitu:

$$g = \frac{2\pi^2 l}{T^2}$$
4.4

5. Stopwatch

B. TUJUAN

- 1. Melalui percobaan peserta didik dapat menganalisis hubungan antara periode (T) dengan panjang tali ayunan (l) pada ayunan bandul
- 2. Melalui percobaan peserta didik dapat menentukan nilai percepatan gravitasi bumi

C. ALAT DAN BAHAN

1. Statif

Beban atau bandul
 Busur

3. Benang atau tali 7. Kertas grafik

4. Mistar

D. LANGKAH KERJA

- 1. Siapkan alat dan bahan yang diperlukan
- 2. Gantungkan beban/bandul di ujung tali
- 3. Ukurlah panjang tali, dengan panjang tali 25 cm menggunakan mistar

- 4. Siapkan stopwatch, kemudian tarik bandul dengan memberikan simpangan terkecil, lepaskan bandul bersamaan dengan menghidupkan stopwatch
- 5. Catatlah waktu yang diperlukan untuk 5 kali getaran (5 kali ayunan) dengan waktu yang terbaca pada stopwatch
- 6. Ulangi percobaan dengan panjang tali yang berbeda 30, 35, 40 cm, 45 cm dengan massa beban dan jumlah ayunan tetap
- 7. Catatlah hasil pengamatan dalam tabel.
- 8. Gantungkan tali sepanjang 25 cm pada statif
- 9. Ulangi langkah 1-7
- 10. Lakukan hal yang sama dengan berat beban yang berbeda
- 11. Catatlah hasil pengamatan pada table 2

Tabel 1

massa beban :.....g.....kg

Jumlah ayunan : 10 ayunan/getaran

No	Panjang tali (cm)	Waktu t (s)	T(s)	$T^2(s)$	f (Hz)	$g (m/s^2)$
1	25					
2	30					
3	35					
4	40					
5	45					

Tabel 2

Panjang tali = 30 cm, jumlah ayunan = 5 kali

No	Massa (gram)	Waktu t (s)	T (s)	$T^2(s)$	f (Hz)	$g (m/s^2)$
1	25					
2	30					
3	35					
4	40					
5	45					

DISKUSIKAN:

Dari hasil percobaan yang telah kalian lakukan kemudian diskusikan!

1.	Berdasarkan dari table diatas, sebutkan faktor apa yang mempengaruhi
	periode pada bandul!
	Jawab :
2.	
_,	Jawab :
_	
3.	Bagaimana pengaruh panjang tali terhadap periode pada ayunan bandul?
	Jawab :
	Bagaimana hubungan antara panjang tali dengan periode pada ayunan bandul?
	Jawab:
	Nyatakan dalam bentuk grafik!
	· · · · · · · · · · · · · · · · · ·
	Dari hubungan antara panjang tali dengan periode. Tentukan besarnya nilai
	percepatan gravitasi dari percobaan bandul!
	Jawab:

		• • • • • • • • • • • • • • • • • • • •				
••••••	•	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••
•••••	•••••	••••				
				•••••		
•••••	•••••	••••				
Kesimpula	ın					
Buatlah	kesimpulan	dari	percobaan	yang	kalian	lakukan!

UNIT 2

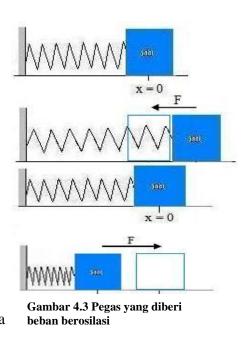
(GERAK HARMONIK SEDERHANA PADA PEGAS)

Hari/Tanggal : Kelompok :

Anggota : 1.

2.

3.


4.

5.

A. TEORI

Pegas adalah salah satu contoh benda elastic. Oleh sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali pada keadaan setimbangnya mula-mula apabila gaya yang bekerja padanya dihilangkan. Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan sehari-hari. Misalnya didalam shockbreaker dan springbed. Pegas-pegas yang tersusun dalam springbed akan memberikan kenyamanan saat orang tidur.

Kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan),

pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis di tulis :

Persamaan ini sering dikenal sebagai *hukum hooke* dan dicetuskan oleh paman *Robert Hooke*. **k adalah konstanta dan x adalah simpangan**. *Hukum Hooke* akurat jika pegas tidak di tekan sampai kumparan pegas bersentuhan atau diregangkan sampai batas elastisitas. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Konstanta pegas berkaitan dengan kaku atau lembut sebuah pegas. **Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin lembut sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas.** Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Pegas dapat bergerak jika terlebih dahulu diberikan gaya luar.

Besaran fisika pada Gerak Harmonik Sederhana pada pegas pada dasarnya sama dengan ayunan sederhana, yakni terdapat periode, frekuensi dan amplitudo. Jarak x dari posisi setimbang disebut simpangan. Simpangan maksimum alias jarak terbesar dari titik setimbang disebut amplitudo (A). Satu getaran Gerak Harmonik Sederhana pada pegas adalah gerak bolak balik lengkap dari titik awal dan kembali ke titik yang sama.

B. TUJUAN

- Melalui percobaan peserta didik dapat memahami dan menjelaskan prinsip gerak harmonik sederhana pada pegas
- Melalui percobaan peserta didik dapat menganalisis faktor yang mempengaruhi periode pada getaran pegas

Melalui percobaan peserta didik dapat menghitung nilai konstanta pegas
 (k)

C. ALAT DAN BAHAN

- Statif
- Pegas
- Beban
- Stopwatch
- Penggaris

D. Langkah Percobaan

PERCOBAAN 1

1) Gantungkanlah seutas pegas pada statif. Pada ujung bebas pegas dihubungkan dengan beban. Seperti pada gambar berikut!

- 2) Tariklah beban dari kedudukan setimbang O ke kedudukan A sejauh 3 cm
- 3) Siapkan sebuah stopwatch dan menjalankannya bersamaan dengan saat anda melepaskan beban dari kedudukan A
- 4) Hitunglah waktu yang dibutuhkanpegas untuk melakukan 10 kali getaran
- 5) Lakukan kembali langkah 2-4 dengan massa yang berbeda
- 6) Catatlah hasil pengamatanmu kedalam table pengamatan

PERCOBAAN 2

- 1) Gantungkanlah seutas pegas pada statif. Pada ujung bebas pegas dihubungkan dengan beban
- 2) Tariklah beban dari kedudukan setimbang O ke kedudukan A sejauh 2 cm
- 3) Siapkan sebuah stopwatch dan menjalankannya bersamaan dengan saat anda melepaskan beban dari kedudukan A
- 4) Hitunglah waktu yang dibutuhkanpegas untuk melakukan 10 kali getaran
- 5) Lakukan kembali langkah 2-4 dengan amplitudo yang berbeda yaitu 3 cm, 4 cm, 5 cm, dan 6 cm
- 6) Catatlah hasil pengamatanmu kedalam table pengamatan

Tabel Pengamatan

Percobaan 1

No	Beban	Amplitudo	Banyaknya	Waktu	f (Hz)	T(s)
	(gram)	(cm)	getaran	(s)		
1	25	3				
2	30	3				
3	35	3				
4	40	3				
5	45	3				

Percobaan 2

No	Beban	Amplitudo (cm)	Banyaknya getaran	Waktu (s)	f (Hz)	T (s)
	(gram)	(CIII)	getaran	(8)	(HZ)	
1	50	2				
2	50	3				
3	50	4				
4	50	5				
5	50	6				

DISKUSIKAN:

Dari hasil percobaan yang telah kalian lakukan kemudian diskusikan!

1. Faktor apa saja yang mempengaruhi periode pada pegas? Jelaskan

	Jawab :
2.	Berdasarkan persamaan periode pegas $T = 2\pi \sqrt{\frac{m}{k}}$ yang telah dirumuskan ,
	maka berapakah nilai tetapan pegas pada percobaan 1?
	Jawab:

Kesimpulan

Bagaimana kesimpulan kalian mengenai percobaan yang telah dilakukan!

UNIT 3 PERSAMAAN GETARAN

Hari/Tanggal:

Kelompok :

Anggota : 1.

- 2.
- 3.
- 4.
- 5.

A. TEORI

Simpangan Gerak Harmonik Sederhana

$$y = A \sin \omega t = A \sin 2\pi f t$$

$$\mathbf{y} = \mathbf{A} \sin \left(2\pi \frac{t}{T} \right) \tag{4.9}$$

Dengan, y = simpangan (m)

A = amplitudo (m)

 ω = kecepatan sudut (rad/s)

f = frekuensi (Hz)

t = waktu tempuh (s)

$$\frac{t}{r} = fase \ getaran$$

Jika pada saat awal benda pada posisi θ_0 , maka

$$y = A \sin \omega t = A \sin 2\pi f t$$

Besar sudut ($\omega t + \theta_0$) disebut sudut fase (θ), sehingga

$$\theta = \omega t + \theta_0 = \frac{2\pi}{T} + \theta_0$$

$$\boldsymbol{\theta} = 2\pi f t + \boldsymbol{\theta}_0 \qquad 4.10$$

Fase (φ) dalam gerak harmonik dirumuskan berikut.

$$\varphi = \frac{\theta}{2\pi} = \frac{t}{T} + \frac{\theta_0}{2\pi} \qquad \dots \qquad 4.11$$

Beda fase ($\Delta \phi$) dirumuskan:

$$\begin{split} \Delta \boldsymbol{\varphi} &= \boldsymbol{\varphi}_2 - \boldsymbol{\varphi}_1 \\ &= \left(\frac{t_2}{T} + \frac{\theta_0}{2\pi}\right) - \left(\frac{t_1}{T} + \frac{\theta_0}{2\pi}\right) \\ &= \frac{t_2}{T} - \frac{t_1}{T} \end{split}$$

$$\Delta \boldsymbol{\varphi} = \frac{t_2 - t_1}{T} = \frac{\Delta t}{T} \tag{4.12}$$

Dengan, φ = fase getaran $\Delta \varphi$ = beda fase

B. TUJUAN

Melalui diskusi peserta didik dapat menentukan kecepatan dan percepatan

Diskusikanlah pertanyaan-pertanyaan dibawah ini bersama teman sekelompokmu

- 1. Berdasarkan persamaan simpangan yang telah kalian ketahui, maka tentukanlah persaman kecepatan dan percepatan pada gerak harmonik sederhana!
- 2. Sebuah benda melakukan gerak harmonik sederhana yang memenuhi persamaan $y=6 \sin \left(0.5\pi t + \frac{\pi}{6}\right)$ dengan y dalam meter dan t dalam sekon, tentukanlah
 - a. Amplitudo, frekuensi, dan periode pegas
 - b. Persamaan, kecepatan, dan percepatan
 - c. Simpangan kecepatan, dan percepatan benda saat t=5 sekon

LAMPIRAN B

- **B.1 Kisi-kisi Instrumen Penelitian**
- **B.2** Instrumen Uji Penelitian
- **B.3 Instrumen Tes Valid**
- **B.4 Soal Instrumen Penelitian**

KISI-KISI HASIL BELAJAR

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI PELAJARAN: USAHA DAN ENERGI dan GERAK HARMONIK SEDERHANA

KELAS/SEMESTER : XI/I

TAHUN AJARAN : 2017/2018

Kompetensi Dasar

3.3 Menganalisis konsep energi, usaha, hubungan usaha dan perubahan energi, dan hukum kekekalan energi untuk menyelesaikan permasalahan gerak dalam kejadian sehari-hari

- 4.2 Memecahkan masalah dengan menggunakan metode ilmiah terkait dengan konsep gaya, dan kekekalan energi
- 3.4 Menganalisis hubungan antara gaya dengan gerak getaran

4.4 Merencanakan dan melaksanakan percobaan getaran harmonik pada ayunan bandul dan getaran pegas

Indikator				Ra	nah l	nah Kognitif	
Pembelajaran In	Indikator Soal	Soal	Jawaba n	C_1	C_2	C ₃	C ₄
Menjelaskan konsep usaha dalam fisika	Menjelaskan pengertian usaha	 Perkalian antara besaran gaya dan perpindahan adalah pengertian dari	В	V			
	Menjelaskan usaha sama dengan nol	2. Wahyu mendorong mobil yang sedang mogok, tetapi mobil tersebut tetap tak bergerak. Usaha yang dilakukan Wahyu adalah	В		V		

	No. 1 d	A. Tetap D. Maksimum B. Nol E. Minimum C. Tidak henti-hentinya			
2. Membedakan contoh termasuk usaha dan bukan usaha menurut fisika dalam kehidupan sehari-hari	Menyebutkan contoh termasuk usaha dalam kehidupan sehari-hari	3. Berdasarkan dari beberapa pernyataan dibawah ini, yang bukan termasuk contoh usaha dalam konsep fisika kaitannya kehidupan sehari-hari yaitu	Е	V	
3. Menghitung persamaan usaha untuk menyelesaikan permasalahan dalam kehidupan sehari-hari	Menghitung besar usaha pada bidang datar	 4. Sebuah balok dengan massa M berada pada bidang datar, balok tersebut ditarik oleh gaya sebesar 30 N. Jika balok berpindah sejauh 50 cm, maka usaha yang dilakukan oleh gaya tersebut adalah	С		V
	Menghitung besar usaha dari gaya yang membentuk sudut terhadap perpindahan	5. Fahmi mendorong sebuah meja dengan gaya 100 N sejauh 10 m. Apabila Fahmi mendorong meja tersebut dengan sudut 30 ⁰ terhadap arah vertikal, maka usaha yang dilakukan Fahmi adalah	С		V

Menghitung besar usaha dari gaya yang membentuk sudut terhadap perpindahan pada bidang datar	 A. 0,5√3 kJ	В	√
Menghitung besar usaha dari gaya yang membentuk sudut terhadap perpindahan pada bidang miring	7. Perhatikan gambar berikut!	C	V

		Sebuah benda dengan massa 20 kg meluncur ke bawah sepanjang bidang miring licin yang membentuk sudut 30° terhadap bidang horizontal. Jika benda bergeser sejauh 2 m, maka usaha yang dilakukan oleh benda tersebut adalah A. 160 J C. 200 J E. 240 J B. 180 J D. 220 J			
	Menghitung usaha total	8. Dua buah gaya bekerja pada sebuah benda sehingga benda berpindah sejauh s meter ke kanan. Gaya pertama sebesar 10 N ke kiri sedangkan gaya kedua sebesar 25 N ke kanan membentuk sudut 30° terhadap horizontal. Jika usaha total oleh kedua gaya adalah 46,6 J, maka s sama dengan A. 6 meter C. 4 meter E.2 meter B. 5 meter D. 3 meter	С		V
4. Memformulasika n hubungan antara gaya dan perpindahan dalam bentuk grafik	Menghitung besar usaha dari grafik hubungan F-s	9. Perhatikan grafik. Usaha dilakukan benda yang mendapat gaya F sehingga berpindah sejauh 10 m adalah	D		√

	A. 50 J C. 150 J E. 250 J B. 100 J D. 200 J			
Menghitung besar usaha dari grafik hubungan F-s	10. Sebuah balok bermassa 50 gr bergerak sepanjang garis lurus pada permukaan mendatar akibat pengaruh gaya yang berubah-ubah terhadap kedudukan seperti ditunjukkan pada gambar di samping. Maka usaha yang dilakukan gaya tersebut untuk memindahkan balok sejauh 14 m adalah A. 80 J C. 60 J E. 40 J	C		V

		B. 70 J D. 50 J				
5. Menjelaskan konsep energi	Menjelaskan pengertian energi	s (meter) 10 14 11. Benda massa m dan bergerak dengan kelajuan v maka benda dikatakan memiliki A. Energi Potensial D. Energi Panas B. Energi Kinetik E. Energi Bunyi	В	✓		
6. Menghitung persamaan energi kinetik dan energi potesial	Menghitung energi kinetik	C. Energi Mekanik 12. Sebuah benda dengan massa m bergerak dengan kecepatan V sehingga mempunyai energi kinetik E joule. Jika massa benda dibuat menjadi 1/2 kali massa mula-mula dari kecepatannya dibuat 2 kali kecepatan semula, maka energi kinetiknya menjadi A. E joule C. 1/4E joule E. 2E joule B. 3E joule D. 4E joule	E		V	

Menghitung energi kinetik	13. Sebuah pesawat terbang bergerak dengan energy kinetik T. Jika kemudian kecepatannya menjadi 2 kali semula, maka energi kinetiknya menjadi	D	V	
Mengitung perbandingan energi kinetic	14. Massa benda A tiga kali massa benda B dan kecepatan benda A setengah kali kecepatan benda B. Perbandingan energi kinetik benda A dengan energi kinetik benda B adalah A. 3: 4 C. 2: 3 E. 1:1 B. 3: 2 D. 2: 1	A	√	
Penerapan energi kinetik	15. Perhatikan gambar berikut! Sebuah bola ditendang dengan sudut elevasi tertentu sehingga lintasannya membentuk parabola seperti gambit diatas. Berdasarkan lintasan tersebut, energi kinetik bola paling kecil adalah pada titik	D		√

	B. Titik II D. titik III			
	16. Sebuah tongkat yang panjangnya 40 cm dan tegak di atas permukaan tanah dijatuhi martil 10 kg dari ketinggian 50 cm di atas ujungnya. Bila gaya tahan rata-rata tanah 10 ³ N, maka banyaknya tumbukan martil yang perlu dilakukan terhadap tongkat agar menjadi rata dengan permukaan tanah adalah A. 4 kali C. 6 kali E. 10 kali B. 5 kali D. 8 kali	D		V
Menghitung energi potensial tiga buah benda	masing-masing massanya m _A = 2 kg, m _B = 4 kg dan m _C = 3 kg terletak di tangga seperti gambar disamping. Tiap tangga ketinggiannya 30 cm. Jika energi potensial massa B bernilai nol, maka energi potensial m _A dan m _C adalah A. EP _A = -6 J, dan EP _C = 18 J B. EP _A = -18 J, dan EP _C = 6 J C. EP _A = 6 J, dan EP _C = -18 J D. EP _A = 6 J, dan EP _C = 18 J E. EP _A = -6 J, dan EP _C = -18 J	A		~

	Menghitung perbandingan energi potensial 2 buah benda	18. Benda A bermassa 1,5 kg berada di atas meja setinggi 120 cm dan benda B bermassa 5 kg berada di atas kursi setinggi 60 cm. Maka perbandingan energi potensial benda A dan B adalah	E		√	
	Menghitung energi potensial ditanyakan gayanya	19. Sebuah bola besi bermassa 20 kg jatuh bebas dari ketinggian 4 m diatas hamparan pasir. Sesampainya dipermukaan pasir bola besi tersebut bisa masuk sedalam 5 cm. Gaya tahan pasir terhadap bola tersebut adalah A. 400 N C. 240 N E. 80 N B. 320 N D. 160 N	D		~	
7. Memformulasika n hubungan antara usaha dan energi kinetik dalam kejadian sehari-hari	8. Menganalisis hubungan antara usaha dengan energi kinetik	20. Benda A memiliki massa 4 kg dan kelajuannya 2 m/s. Bena B memiliki massa 2 kg dan kelajuannya 4 m/s. Kedua benda bergerak pada arah yang sama. Masing-masing benda kemudian menerima gaya sebesar F yang arahnya berlawanan dengan arah gerak kedua benda sampai masing-masing benda berhenti. Pernyataan dibawah ini yang benar adalah	C			√

A. Kedua benda menempuh jarak yang sama					
B. Benda A menempuh jarak 2 kali lebih jauh					
dari benda B					
C. Benda B menempuh jarak 2 kali lebih jauh					
dari benda A					
D. Benda A menempuh jarak 4 kali lebih jauh					
dari benda B					
E. Benda B menempuh jarak 4 kali lebih jauh					
dari benda A					
21. Sebuah balok bermassa 4 kg berada diatas					
permukaan licin dalam keadaan diam. Jika balok					
tersebut mengalami percepatan 2 m/s ² dalam					
arah horizontal, maka usaha yang dilakukan	C			$\sqrt{}$	
terhadap balok selama 5 detik adalah					
A. 100 joule					
B. 150 joule D. 250 joule					
22. Sebuah benda dengan massa 2 kg bergerak					
dengan kecepatan 2 m.s ⁻¹ . Beberapa saat					
kemudian benda itu bergerak dengan kecepatan 5					
m.s ⁻¹ . Usaha total yang dikerjakan pada benda	D			$\sqrt{}$	
selama beberapa saat tersebut adalah					
A. 4 J C. 15 J E. 25 J					
в. 9 Ј р. 21 Ј					
	B. Benda A menempuh jarak 2 kali lebih jauh dari benda B C. Benda B menempuh jarak 2 kali lebih jauh dari benda A D. Benda A menempuh jarak 4 kali lebih jauh dari benda B E. Benda B menempuh jarak 4 kali lebih jauh dari benda A 21. Sebuah balok bermassa 4 kg berada diatas permukaan licin dalam keadaan diam. Jika balok tersebut mengalami percepatan 2 m/s² dalam arah horizontal, maka usaha yang dilakukan terhadap balok selama 5 detik adalah A. 100 joule C. 200 joule E. 300 joule B. 150 joule D. 250 joule 22. Sebuah benda dengan massa 2 kg bergerak dengan kecepatan 2 m.s¹. Beberapa saat kemudian benda itu bergerak dengan kecepatan 5 m.s¹. Usaha total yang dikerjakan pada benda selama beberapa saat tersebut adalah A. 4 J C. 15 J E. 25 J	B. Benda A menempuh jarak 2 kali lebih jauh dari benda B C. Benda B menempuh jarak 2 kali lebih jauh dari benda A D. Benda A menempuh jarak 4 kali lebih jauh dari benda B E. Benda B menempuh jarak 4 kali lebih jauh dari benda A 21. Sebuah balok bermassa 4 kg berada diatas permukaan licin dalam keadaan diam. Jika balok tersebut mengalami percepatan 2 m/s² dalam arah horizontal, maka usaha yang dilakukan terhadap balok selama 5 detik adalah A. 100 joule C. 200 joule E. 300 joule B. 150 joule D. 250 joule 22. Sebuah benda dengan massa 2 kg bergerak dengan kecepatan 2 m.s⁻¹. Beberapa saat kemudian benda itu bergerak dengan kecepatan 5 m.s⁻¹. Usaha total yang dikerjakan pada benda selama beberapa saat tersebut adalah A. 4 J C. 15 J E. 25 J	B. Benda A menempuh jarak 2 kali lebih jauh dari benda B C. Benda B menempuh jarak 2 kali lebih jauh dari benda A D. Benda A menempuh jarak 4 kali lebih jauh dari benda B E. Benda B menempuh jarak 4 kali lebih jauh dari benda A 21. Sebuah balok bermassa 4 kg berada diatas permukaan licin dalam keadaan diam. Jika balok tersebut mengalami percepatan 2 m/s² dalam arah horizontal, maka usaha yang dilakukan terhadap balok selama 5 detik adalah A. 100 joule C. 200 joule E. 300 joule B. 150 joule D. 250 joule 22. Sebuah benda dengan massa 2 kg bergerak dengan kecepatan 2 m.s¹. Beberapa saat kemudian benda itu bergerak dengan kecepatan 5 m.s¹. Usaha total yang dikerjakan pada benda selama beberapa saat tersebut adalah A. 4 J C. 15 J E. 25 J	B. Benda A menempuh jarak 2 kali lebih jauh dari benda B C. Benda B menempuh jarak 2 kali lebih jauh dari benda A D. Benda A menempuh jarak 4 kali lebih jauh dari benda B E. Benda B menempuh jarak 4 kali lebih jauh dari benda A 21. Sebuah balok bermassa 4 kg berada diatas permukaan licin dalam keadaan diam. Jika balok tersebut mengalami percepatan 2 m/s² dalam arah horizontal, maka usaha yang dilakukan terhadap balok selama 5 detik adalah A. 100 joule C. 200 joule E. 300 joule B. 150 joule D. 250 joule 22. Sebuah benda dengan massa 2 kg bergerak dengan kecepatan 2 m.s⁻¹. Beberapa saat kemudian benda itu bergerak dengan kecepatan 5 m.s⁻¹. Usaha total yang dikerjakan pada benda selama beberapa saat tersebut adalah A. 4 J C. 15 J E. 25 J	B. Benda A menempuh jarak 2 kali lebih jauh dari benda B C. Benda B menempuh jarak 2 kali lebih jauh dari benda A D. Benda A menempuh jarak 4 kali lebih jauh dari benda B E. Benda B menempuh jarak 4 kali lebih jauh dari benda A 21. Sebuah balok bermassa 4 kg berada diatas permukaan licin dalam keadaan diam. Jika balok tersebut mengalami percepatan 2 m/s² dalam arah horizontal, maka usaha yang dilakukan terhadap balok selama 5 detik adalah A. 100 joule C. 200 joule E. 300 joule B. 150 joule D. 250 joule 22. Sebuah benda dengan massa 2 kg bergerak dengan kecepatan 2 m.s⁻¹. Beberapa saat kemudian benda itu bergerak dengan kecepatan 5 m.s⁻¹. Usaha total yang dikerjakan pada benda selama beberapa saat tersebut adalah A. 4 J C. 15 J E. 25 J

	Menghitung usaha kaitannya dengan energi kinetik yang dilakukan pada datar	v ₁ v ₂ t = 3 detik Sebuah benda bermassa 4 kg mula-mula diam kemudian bergerak lurus dengan percepatan 3 m/s². maka usaha yang dilakukan yang diubah menjadi energi kinetik setelah 3 detik adalah A. 171 J C. 315 J E. 162 J B. 153 J D. 216 J	E			√
	Menghitung jarak	24. Mobil A memiliki massa 0,75 kali massa mobil B, sedangkan laju mobil A adalah 0,25 kali laju mobil B. Kedua mobil masing-masing diperlambat oleh gaya konstan yang sama F, sampai keduanya berhenti. Apabila jarak yang diperlukan untuk menghentikan mobil A adalah 3 meter, jarak untuk mobil B sampai sampai berhenti adalah	A		√	
9. Memformulasika	Menghitung usaha kaitanya	25. Sebuah bola bermassa 500 gram dijatuhkan dari	E		$\sqrt{}$	

n hubungan antara usaha dan energi kinetik dalam kejadian sehari-hari	dengan energi potensial	atas gedung setinggi 2 m. Besar usaha selama perpindahan bola tersebut adalah A. 50 J C. 25 J E. 10 J B. 30 J D. 20 J				
	Menghitung usaha kaitanya energi potensial pada gerak jatuh bebas	26. Sebuah benda massanya 2 kg jatuh bebas dari puncak gedung bertingkat yang tingginya 100 m. Apabila gesekan dengan udara diabaikan dengan g = 10 m/s² maka usaha yang dilakukan oleh gaya berat sampai pada ketinggian 20 m dari tanah adalah	A		√	
10. Menjelaska n konsep hukum kekekalan energi mekanik	Menjelaskan hukum kekekalan energi mekanik	 27. Jika hukum kekekalan energi mekanik berlaku pada suatu system, maka pernyataan yang benar adalah A. Energi kinetik sistem selalu berkurang B. energi potensial sistem selalu bertambah C. jumlah energi potensial dan energi kinetik sistem berubah D. jumlah energi potensial dan energi kinetik sistem tetap E. jumlah energi potensial dan energi kinetik sistem selalu bertambah 	D	√		

	Menjelaskan energi potensial pada gerak jatuh bebas	28. Sebuah benda melakukan gerakan jatuh bebas, semakin kebawah A. Energi kinetiknya berkurang B. Energi potensialnya bertambah C. Energi mekaniknya berkurang D. Energi mekanikya tetap E. Energi kinetiknya tetap	D	V	
11. Menghitung rumus hukum kekekalan energi mekanik	Menghitung tinggi pada hukum kekekalan energi mekanik	29. Sebuah bola yang massanya 2 kg jatuh bebas dari posisi A seperti pada gambar. A Ketika sampai di B, energi kinetik bola tersebut 2 kali energi potensialnya. Maka tinggi titik B dari permukaan tanah adalah A. 30 m C. 15 m E. 10 m B. 20 m D. 1,5 m	В		√

Menghitung kecepatan sebuah benda	30. Sebuah bola bermassa 2 kg bergerak jatuh bebas dari ketinggian 20 meter di atas permukaan tanah. Jika percepatan gravitasi 10 m/s², maka kecepatan bola pada saat ketinggianya 5 meter di atas permukaan tanah adalah A. 6 m/s C. 10 m/s E. 10√2 m/s B. 8 m/s D. 10√3 m/s	D	√	
	31. Sebuah benda jatuh dari ketinggian 6 meter dari atas tanah. Kecepatan benda tersebut pada saat mencapai ketinggian 1 meter dari tanah jika percepatan gravitasi bumi 10 m/s² adalah	E	√	
Menghitung energi kinetik	32. Dua buah benda A dan B yang keduanya bermassa m jatuh bebas dari ketinggian h meter dan 2h meter. Jika A menyentuh tanah dengan kecepatan v, benda B akan menyentuh tanah dengan energi kinetik sebesar A. $\frac{1}{2}mv^2$ C. $\frac{1}{4}mv^2$ E. $\frac{3}{2}mv^2$ B. mv^2 D. $\frac{3}{4}mv^2$	В	V	

12. Menjelaska n konsep daya	Menghitung besar daya	33. Sebuah kendaraan dipercepat dari 10 m/s² menjadi 20 m/s² dalam waktu 10 detik. Jika massa kendaraan tersebut adalah 1 ton, maka daya yang digunakan untuk melakukan percepatan tersebut adalah A. 20 kW C. 25 kW E. 15 Kw B. 28 kW D. 20 kW	E		V	
13. Menghitung persamaan daya kaitannya dengan usaha dan energi	Menghitung daya rata-rata	34. Seorang murid membawa beban bermassa 20 kg ke tempat pada ketinggian 6 meter dengan menggunakan tangga. Jika waktu yang dibutuhkan oleh murid untuk tiba di tempat itu adalah 25 detik, maka daya rata-rata yang dikeluarkan oleh murid itu adalah A. 48 Watt C. 20 Watt E.10 Watt B. 24 Watt D. 16 Watt	A		√	
	Menghitung daya keluaran	35. Mesin truk Pak Bonar mempunyai kekuatan 1.000 daya kuda (hp). Jika 1 hp = 746 watt maka daya keluaran mesin dengan efisiensi mesin 90 % adalah A. 7,460 .10 ⁵ watt D. 6,714 .10 ⁴ watt B. 7,460 .10 ⁴ watt E. 6,714 .10 ⁵ watt C. 7,460 .10 ³ watt	E		V	
14. Menjelaska n konsep gerak	Mendefenisikan pengertian gerak harmonik	36. Gerak bolak-balik melalui suatu titik yang sama dan berulang-ulang dengan pola yang sama	В	√		

harmonis sederhana	sederhana	dinamakan A. Frekuensi D. Amplitudo B. Getaran E. Periode C. Gelombang			
	Menentukan satu getaran pada ayunan bandul	37. Sebuah bandul berayun dengan pola seperti pada gambar di samping. Jika bandul mulai berayun dari A, maka urutan satu getaran atau satu ayunan yang benar adalah	A		
15. Menjelaska n konsep gaya pemulih pada getaran harmonis	Menjelaskan pengertian gaya pemulih	38. Ketika beban berada di bawah posisi kesetimbangan, beban mengalami gaya ke atas, dan ketika beban berada di atas posisi kesetimbangan, beban mengalami gaya ke bawah. Selama bergetar gaya tersebut selalu mengarah ke posisi kesetimbangan. Gaya	C	$\sqrt{}$	

	tersebut adalah A. Gaya gravitasi B. Gaya gesek C. Gaya pemulih D. Gaya tarik E. Gaya dorong				
Menghiti besar gay pemulih bandul	tali sepanjang 20 cm. Bandul disimpangkan	C		√	
	40. Sebuah benda bermassa 50 gram bergerak harmonik sederhana dengan amplitude 10 cm dan periode 0,2 s. Besar gaya yang bekerja pada system saat simpangannya setengah amplitudo adalah sekitar	В		√	

16. Menghitung besar periode dan frekuensi pada gerak harmonic sederhana	Menghitung frekuensi pada ayunan sederhana	 41. Persamaan gerak harmonis sederhana sebuah benda Y=0,5 sin 40πt. Besarnya frekuensi benda itu adalah A. 0,1 Hz C. 10 Hz E. 200 Hz B. 1,0 Hz D. 20 Hz 	D	V
	Menghitung periode pada ayunan sederhana	42. Seorang anak bermain ayunan dengan tali penggantung sepanjang 2,45 m. Apabila percepatan gravitasi bumi 9,8 m/s², periode ayunan sebesar A. π/2 s C.1,5 π s E. 3π s B. π s D. 2π s	В	V
	Menghitung periode pada ayunan sederhana simpangan diketahui	43. Persamaan gerak harmonik sederhana sebuah benda Y= 0,1 sin 20πt. Besarnya periode benda itu adalah	В	V
		44. Sebuah benda bergetar harmonis dengan amplitudo 4 cm. Pada jarak 2 cm dari posisi setimbang kecepatan dan percepatan partikel memilki besar yang sama. periodenya adalah		V

	Menetukan panjang tali pada ayunan sederhana	A. πs C. $\frac{2\pi}{\sqrt{3}}s$ E. $\frac{\sqrt{3}}{2\pi}s$ B. $2\pi \sqrt{3}s$ D. $\frac{\sqrt{3}}{\pi}s$ 45. Ada sebuah ayunan sederhana yang mempunyai periode 2 detik di tempat yang punya gravitasi 9,8 m/s². Maka panjang tali ayunan tersebut adalah A. 5 m C. 3 m E. 1 m B. 3,5 m D. 2,5 m	E		√	
17. Mengidentif ikasi faktor yang mempengaruhi getaran harmonis pada ayunan bandul	Menunjukan besaran yang mempengaruhi ayunan pada bandul	46. Besarnya periode suatu ayunan sederhana bergantung pada	В	V		
18. Mengidentif ikasi faktor yang	Menjelaskan faktor yang	47. Suatu pegas bergetar harmonik, besar frekuensinya dirumuskan	E	$\sqrt{}$		

mempengaruhi getaran harmonis pada pegas	mempengaruhi getaran harmonis pada pegas	A. $\frac{1}{2\pi} \sqrt{\frac{m}{k}}$ C. $2\pi \sqrt{\frac{k}{m}}$ E. $\frac{1}{2\pi} \sqrt{\frac{k}{m}}$ B. $2\pi \sqrt{\frac{l}{g}}$ D. $\frac{1}{2\pi} \sqrt{\frac{g}{l}}$				
19. Menghitung periode dan frekuensi pada pegas		 48. Dua buah balok logam A 1 kg, disolder pada ujung-ujung sebuah pegas vertikal yang memiliki tetapan gaya pegas 400 N/m. Balok A berada di ujung atas dan balok B diam dipermukaan meja. Balok A kemudian ditekan dan dilepaskan bebas. Frekuensi getarannya A. 10 π Hz C. π/10 Hz E. 2π/√5 Hz B. π/10 Hz D. π/2 Hz 	В		V	
	Menghitung frekuensi pada pegas digantung secara vertikal	49. Sebuah pegas digantungkan vertikal, kemudian ujung bawahnya diberi beban 100 gram sehingga panjangnya bertambah 10 cm. Beban bergerak ke bawah hingga beban bergetar harmonik. Jika g = 10 m/s, maka frekuensi getaran adalah A. 1,6 Hz C. 3,1 Hz E. 5,0 Hz B. 2,5 Hz D. 4,8 Hz	E		V	
	Menghitung periode pada	50. Sebuah beban bermassa 250 gram digantung dengan sebuah pegas yang memiliki konstanta	A		1	

	pegas digantungi beban	100 N/m kemudian disimpangkan hingga terjadi getaran selaras, maka besar periode getarnnya adalahs A. 0,1 π C. 0,5 π E. 5 π B. 1 π D.10 π			
20. Memformul asikan hubungan antara periode kuadrat dengan massa pada pegas	Menghitung konstanta pada pegas	51. Gambar berikut adalah grafik hubungan T² terhadap m dari percobaan getaran pegas. Dua pegas masing-masing identik dengan pegas percobaan disusun seri. Tetapan susunan pegas adalah	A		√
21. Menemukan	Menyebutkan contoh	52. Contoh-contoh benda dalam kehidupan sehari-	В	\checkmark	

penerapan getaran harmonis dalam kehiduapan sehari-hari	penerapan gerak harmonik sederhana	hari yang bekerja berdasarkan prinsip getaran harmonis adalah A. Jembatan yang bergoyang karena gempa B. Ayunan di taman bermain, sringbed, jam bandul klasik C. shocbreaker, ketapel D. ketapel, jam bandul klasik E. jembatan bergoyang karena gempa, ketapel				
22. Menghitung persamaan simpangan	Menghitung simpangan dari sebuah partikel	 53. Semua partikel melakuan gerakan harmonis dengan panjang lintasannya 8 cm. Energi kinetik akan sama dengan energi potensial ketika simpangan getarannya adalah A. 2 cm B. 2√2 cm C. 3√2 E. 2 cm B. 2√2 cm D. 4 cm 	В		√	
	Menghitung simpangan diketahui amplitudonya	 54. Sebuah benda melakukan gerak harmonik dengan amplitudo 2A. Pada saat kecepatannya sama dengan seperempat kecepatan maksimum, maka simpangannya adalah A. 1/3 A C. ¼ A E. √3/2 A B. ½ A D. A 	E		1	
	Menerapkan persamaan	55. Partikel bermassa 0,2 kg melakukan gerak harmonik dengan amplitudo 0,2 m. Pada posisi	C			√

	simpangan	setimbang memiliki energi kinetik 16×10^3 J. Jika fase awalnya 45^0 , persamaan getaran tersebut sesuai dengan A. $y = 0.2 \sin 2t$ B. $y = 0.2 \sin \frac{t}{2}$ C. $y = 0.2 \sin \left(2t + \frac{\pi}{4}\right)$ D. $y = 0.2 \sin \left(2t - \frac{\pi}{4}\right)$ E. $y = 0.2 \sin \left(\frac{1}{2}t + \frac{\pi}{4}\right)$				
23. Membuktik an persamaan kecepatan dan percepatan pada gerak harmonis sederhana	Mengitung kecepatan pada gerak harmonis sederhana	56. Sebuah benda melakukan gerak harmonik dengan persamaan $y=40 \sin{(10\pi t + \pi/6)}$, y dalam cm dan t dalam s. Kecepatan partikel saat $t=2$ s sebesar A. 2π m/s C. π $\sqrt{3}$ m/s E. 2π $\sqrt{3}$ m/s B. 2π $\sqrt{2}$ m/s D. 2 m/s	E			V
	Menghitung kecepatan maksimumnya pada gerak harmonis sederhana	57. Sebuah balok bermassa 0,5 kg dihubungkan dengan sebuah pegas ringan dengan konstanta 200 N/m. Kemudian sistem tersebut berosilasi harmonis. Jika diketahui simpangan maksimumnya adalah 3 cm, maka kecepatan maksimumnya adalah	В		√	

		A. 0,1 m/s C. 1 m/s E. 2 m/s B. 0,6 m/s D. 1,5 m/s				
	Menghitung percepatan maksimum dari gerak harmonis sederhana	58. Sebuah benda melakukan gerak harmonik sederhana dengan amplitudo A dan frekuensi sudut ω . Pada saat kecepatan benda sama dengan 4/5 kecepatan maksimumnya, percepatannya adalah	В			V
24. Menghitung sudut fase dan beda fase pada gerak harmonis sederhana	Menghitung sudut fase dalam dua buah osilator	59. Dua buah osilator bergetar dengan fase sama pada t=0. Frekuensi getaran 10 Hz dan 40 Hz. Setelah 5/4 sekon, kedua getaran itu berselisih sudut fase A. 0 ⁰ C. 45 ⁰ E. 180 ⁰ B. 30 ⁰ D. 90 ⁰	E		~	
	Menghitung beda fase pada sebuah benda yang bergetar haromik	60. Dua buah partikel melakukan gerak harmonic dan mulai bergerak dari titik setimbangnya dengan arah yang sama. Setiap partikel memiliki periode 1/3 s dan 1/5 s. Beda fase dan sudut fase kedua gerak partikel setelah bergerak 1/4	A		V	

	sebesar			
	 61. Jika ada sebuah titik materi melakukan getaran harmonik sederhana dengan simpangan terbesar adalah A. Pada saat simpanganya ½ A√2, maka fase getaran titik tersebut terhadap garis keseimbangan adalah A. ½ C. ½ E. ⅙ B. ½ D. ½ 	В	√	
Menghitung f pada sebuah benda bergeta harmonik	besarnya fase setelah bergetar 1/12 sekon	C	V	
25. Menghitung persamaan besar energi kinetic maksimumny	63. Benda bermassa 2 kg bergetar harmonis sesuai dengan persamaan $x = 6\cos(100t + \frac{\pi}{4})$ cm. Energi kinetik maksimumnya	D	√	

harmonis		B. 16 J D. 36 J				
	Menghitung besar energi kinetic diketahui simpanganya,	64. Sebuah pegas dengan konstanta k diberi beban yang massanya m. Benda digetarkan harmonis dengan amplitudo A. Energi kinetik benda itu pada saat simpanganya ½ amplitudo ialah A. $\frac{1}{8}kA^2$ C. $\frac{3}{8}kA^2$ E. $\frac{5}{8}kA^2$ B. $\frac{1}{4}kA^2$ D. $\frac{1}{2}kA^2$	С		1	
		65. Benda bergetar selaras sederhana pada pegas dengan tetapan gaya 80 N/m. Amplitudo getaran tersebut 20 cm dan kecepatan maksimum sebesar 4 m/s. Massa benda tersebut bernilai	В		~	
	Menghitung energi total pada gerak harmonis sederhana	66. Sebuah benda bermassa 1 kg digetarkan dengan persamaan y = 0,1 sin 100 t, dengan y dalam meter dan t dalam sekon. Energi total yang dimiliki benda sebesar	E		V	
	Menghitung	67. Grafik dibawah ini menunjukkan grafik	С			

energi potensial berdasarkan dari grafik	hubungan antara perpanjangan pegas (x), karena pengaruh gaya (F). F Bila pegas ditarik dengan gaya 25 N, maka pertambahan panjang pegas dan energi potensial pegas berturut-turut adalah A. 7,5 cm, 0,56 joule B. 10 cm, 1,06 joule C. 12,5 cm, 1,56 joule D. 15 cm, 2,06 joule E. 17,5 cm, 2,56 joule				
	68. Pada saat energi kinetik benda melakukan gerak harmonis sederhana sama dengan energi potensialnya, maka	C		√	

	E. Percepatannya Nol				
	69. Perubahan energi potensial maksimum suatu benda yang bergerak harmonik pada ujung pegas bila amplitudonya diperbesar dua kali, dibandingkan dengan energi semula adalah	E		√	
Mengh energi getarar harmon	harmonik sederhana dengan periode 8 sekon. Kecepatan benda setelah 1 sekon melewati titik	С		√	

LEMBAR SOAL

Mata Pelajaran : Fisika

Materi : Usaha & Energi dan Gerak Harmonis Sederhana

Kelas/Semester : XI/1

Waktu : 90 menit

Petunjuk Mengerjakan Soal

1. Berdoalah sebelum dan sesudah mengerjakan soal

- 2. Tuliskan identitas anda ke dalam lembar jawab yang disediakan.
- 3. Bacalah soal dengan teliti dan kerjakan sesuai petunjuk khusus
- 4. Tersedia waktu 90 menit untuk mengerjakan tes tersebut.

Petunjuk Khusus

Pilihlah satu jawaban dengan memberi tanda (X) pada lembar jawaban yang anda anggap benar, dan periksa.

Contoh:

Pilihan semula X В \mathbf{C} D E X \mathbf{C} В X Е Dibetulkan menjadi 1. Perkalian antara besaran gaya dan perpindahan adala pengertian dari..... A. Energi C. Energi Kinetik E. Daya B. Usaha D. Energi Potensial 2. Wahyu mendorong mobil yang sedang mogok, tetapi mobil tersebut tetap tak bergerak. Usaha yang dilakukan Wahyu adalah......

- A. Tetap C. Tidak henti-hentinya E. Minimum
- B. Nol D. Maksimum
- 3. Berdasarkan dari beberapa pernyataan dibawah ini, yang bukan termasuk contoh usaha dalam konsep fisika kaitannya kehidupan sehari-hari yaitu......
 - A. Melempar batu
 - B. Mendorong meja
 - C. Memindahkan lemari
 - D. Menenteng Tas
 - E. Berusaha mendapatkan nilai yang tinggi

4. Sebuah balok dengan massa M berada pada bidang datar, balok tersebut ditarik oleh gaya sebesar 30 N. Jika balok berpindah sejauh 50 cm, maka usaha yang dilakukan oleh gaya tersebut adalah......

A. 25 J

C. 15 J

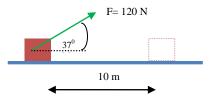
E. 5 J

B. 20 J

D. 10

5. Fahmi mendorong sebuah meja dengan gaya 100 N sejauh 10 m. Apabila Fahmi mendorong meja tersebut dengan sudut 30⁰ terhadap arah vertikal, maka usaha yang dilakukan Fahmi adalah.......

A. $0,5\sqrt{3} kJ$


C. 0,5 kJ

E. 1 kJ

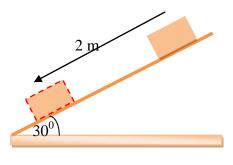
B. 0,5 *kJ*

D. 0,8 kJ

6. Sebuah balok ditarik gaya F = 120 N yang membentuk sudut 37° terhadap arah horizontal seperti diperlihatkan pada gambar di samping. Jika balok bergeser sejauh 10 m, maka usaha yang dilakukan pada balok tersebut adalah......

A. 1200 Joule

C. 720 Joule


E. 120 Joule

B. 960 Joule

D. 600 Joule

7. Perhatikan gambar disamping!

Sebuah benda dengan massa 20 kg meluncur ke bawah sepanjang bidang miring licin yang membentuk sudut 30° terhadap bidang horizontal. Jika benda bergeser sejauh 2 m, maka usaha yang dilakukan oleh benda tersebut adalah.....

A. 160 J

C. 200 J

E. 240 J

B. 180 J

D. 220 J

8. Dua buah gaya bekerja pada sebuah benda sehingga benda berpindah sejauh s meter ke kanan. Gaya pertama sebesar 10 N ke kiri sedangkan gaya kedua sebesar 25 N ke kanan membentuk sudut 30⁰ terhadap horizontal. Jika usaha total oleh kedua gaya adalah 46,6 J, maka s sama dengan...........

E. 2 meter

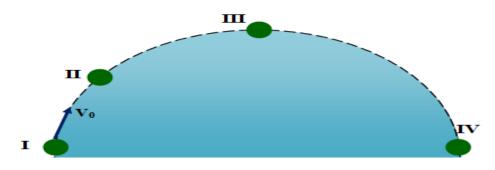
9.	Perhatikan grafik. Usaha dila yang mendapat gaya F sehing	F (N)	
	sejauh 10 m adalah	20	
	A. 50 J D.	200 J	
	B. 100 J E. 2	250 J	10
	C. 150 J		$\Delta s (m)$
10.	Sebuah balok bermassa 50	gr 🛕	
	bergerak sepanjang garis lu	Ť	
	pada permukaan menda		
	akibat pengaruh gaya ya	_	
	berubah-ubah terhac		A
	kedudukan seperti ditunjukl		
	pada gambar di samping. Ma	aka :	\rightarrow s (meter)
	usaha yang dilakukan ga	01 10	14
		balok sejauh 14 m adalah	
	A. 80 J	C. 60 J	E. 40 J
	В. 70 Ј	D. 50 J	2. 100
11		rak dengan kelajuan v maka b	enda dikatakan
	memiliki	ran dengan kelajaan v maka e	onda dikatakan
	A. energi potensial	C. energi mekanik	E. energi bunyi
	B. energi kinetik	D. energi panas	,
12.		sa m bergerak dengan kecepat	an V sehingga
	<u> </u>	joule. Jika massa benda dibuat i	
	*	patannya dibuat 2 kali kecepatan	n semula, maka
	energi kinetiknya menjadi A.E joule	 C. 1/4E joule	E. 2E joule
	B. 3E joule	D. 4E joule	E. ZE joule
13.	•	gerak dengan energy kinetik T.	Jika kemudian
		semula, maka energi kinetiknya m	
	A. ½ T	C. 2T	E. 16T
	B. T	D. 4T	

C. 4 meter

D. 3 meter

A. 6 meter

B. 5 meter


- 14. Massa benda A tiga kali massa benda B dan kecepatan benda A setengah kali kecepatan benda B. Perbandingan energi kinetik benda A dengan energi kinetik benda B adalah.....
 - A.3:4

C. 2: 3

E. 1:1

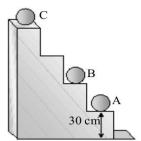
B.3:2

- D. 2: 1
- 15. Sebuah bola ditendang dengan sudut elevasi tertentu sehingga lintasannya membentuk parabola seperti gambit diatas. Berdasarkan lintasan tersebut, energi kinetik bola paling kecil adalah pada titik......

A. Titik I

- C. Titik II dan III
- E. titik IV

B. Titik II


- D. titik III
- 16. Sebuah tongkat yang panjangnya 40 cm dan tegak di atas permukaan tanah dijatuhi martil 10 kg dari ketinggian 50 cm di atas ujungnya. Bila gaya tahan rata-rata tanah 10³ N, maka banyaknya tumbukan martil yang perlu dilakukan terhadap tongkat agar menjadi rata dengan permukaan tanah adalah......
 - A. 4 kali

C. 6 kali

E. 10 kali

B. 5 kali

- D. 8 kali
- 17. Tiga buah benda yang masing-masing massanya m_A = 2 kg, m_B = 4 kg dan m_C = 3 kg terletak di tangga seperti gambar disamping..Tiap tangga ketinggiannya 30 cm. Jika energi potensial massa B bernilai nol, maka energi potensial m_A dan m_C adalah......

- A. $EP_A = -6 J$, dan $EP_C = 18 J$
- B. $EP_A = -18 \text{ J}$, dan $EP_C = 6 \text{ J}$
- C. $EP_A = 6 J$, dan $EP_C = -18 J$
- D. $EP_A = 6 J$, dan $EP_C = 18 J$
- E. $EP_A = -6 J$, dan $EP_C = -18 J$

18.	Benda A bermassa 1,5 kg berada	a di atas meja sehingga	a 120 cm dan benda B
	bermassa 5 kg berada di atas kur		ta perbandingan energi
	potensial benda A dan B adalah A. 5:1	C. 1:3	E. 3:5
	B. 3:1	D. 5:3	2.5.5
19.	Sebuah bola besi bermassa 20		ketinggian 4 m diatas
	hamparan pasir. Sesampainya dip sedalam 5 cm. Gaya tahan pasir t	permukaan pasir bola be erhadap bola tersebut a	esi tersebut bisa masuk dalah
	A. 400 N	C. 240 N	E. 80 N
20	B. 320 N	D. 160 N	
20.	Benda A memiliki massa 4 kg da 2 kg dan kelajuannya 4 m/s. K Masing-masing benda kemudian berlawanan dengan arah gerak berhenti. Pernyataan dibawah ini A. Kedua benda menempuh jara	edua benda bergerak j n menerima gaya seb kedua benda sampai yang benar adalah	pada arah yang sama. besar F yang arahnya masing-masing benda
	B. Benda A menempuh jarak 2 k	kali lebih jauh dari bend	da B
	C. Benda B menempuh jarak 2 k	ali lebih jauh dari bend	la A
	D. Benda A menempuh jarak 4 k	kali lebih jauh dari bend	la B
	E. Benda B menempuh jarak 4 k	tali lebih jauh dari bend	la A
21.	Sebuah balok bermassa 4 kg bediam. Jika balok tersebut mengal maka usaha yang dilakukan terha A. 100 joule	ami percepatan 2 m/s ²	dalam arah horizontal,
	B. 150 joule	D. 250 joule	
22.	Sebuah benda dengan massa d Beberapa saat kemudian benda i total yang dikerjakan pada benda A. 4 J B. 9 J	tu bergerak dengan kec	cepatan 5 m.s ⁻¹ . Usaha
23.	Sebuah benda bermassa 4 kg r	nula-	
	mula diam kemudian bergerak dengan percepatan 3 m/s². usaha yang dilakukan yang di	maka ubah	a = 3
	menjadi energi kinetik setelah 3 adalah	detik —	t = 3 detik

A. 171 J C. 315 J E. 162 J B. 153 J D. 216 J

24. Sebuah bola bermassa 500 gram dijatuhkan dari atas gedung setinggi 2 m. Besar usaha selama perpindahan bola tersebut adalah...........

A. 50 J C. 25 J E. 10 J

B. 30 J D. 20 J

25. Sebuah benda massanya 2 kg jatuh bebas dari puncak gedung bertingkat yang tingginya 100 m. Apabila gesekan dengan udara diabaikan dan $g = 10 \text{ m/s}^2$ maka usaha yg dilakukan oleh gaya berat sampai pada ketinggian 20 m dari tanah adalah.....

A. 1600 joule C. 400 joule E. 100 joule B. 800 joule D. 200 joule

26. Jika hukum kekekalan energi mekanik berlaku pada suatu system, maka pernyataan yang benar adalah.....

A. Energi kinetic system selalu berkurang

B. energy potensial system selalu bertambah

C. jumlah energy potensial dan energy kinetic system berubah

D. jumlah energy potensial dan energy kinetic system tetap

E. jumlah energy potensial dan energy kinetic system selalu bertambah

27. Sebuah benda melakukan gerakan jatuh bebas, semakin kebawah

A. Energi kinetiknya berkurang

B. Energi potensialnya bertambah

C. Energi mekaniknya berkurang

D. Energi mekanikya tetap

E. Energi kinetiknya tetap

28. Sebuah bola yang massanya 2 kg jatuh bebas dari posisi A seperti pada gambar. Ketika sampai di B, energi kinetik bola tersebut 2 kali energi potensialnya. Maka tinggi titik B dari permukaan tanah adalah.......

A. 30 m C. 15 m E. 10 m

B. 20 m D. 1,5 m

ata	ebuah bola bermassa 2 kg berg as permukaan tanah. Jika perce da saat ketinggianya 5 meter d	epatan gravitasi 10 m/s², mak	ka kecepatan bola
C	6 m/s	C. 10 m/s	E. $10\sqrt{2 m/s}$
D	. 8 m/s	D. $10\sqrt{3} \ m/s$	
te	ebuah benda jatuh dari ketingg rsebut pada saat mencapai ke avitasi bumi 10 m/s² adalah	etinggian 1 meter dari tanal	•
A	. 100 m . 75 m	C. 50 m D. 25 m	E. 10 m
ke be	ua buah benda A dan B ya tinggian h meter dan 2h meter nda B akan menyentuh tanah c	. Jika A menyentuh tanah der lengan energi kinetik sebesar	ngan kecepatan v,
	$\frac{1}{2}\text{mv}^2$ mv^2	C. $\frac{1}{4}$ mv ² D. $\frac{3}{4}$ mv ²	$E. \frac{3}{2} mv^2$
de un	ebuah kendaraan dipercepat da tik. Jika massa kendaraan ters utuk melakukan percepatan ters . 20 kW	ari 10 m/s² menjadi 20 m/s² ebut adalah 1 ton, maka daya	
В	28 kW	D. 20 kW	
me un ole	orang murid membawa beban eter dengan menggunakan tan atuk tiba di tempat itu adalh 25 eh murid itu adalah	gga. Jika waktu yang dibutu 5 detik, maka daya rata-rata	nhkan oleh murid yang dikeluarkan
A	. 48 Watt	C. 20 Watt	E. 10 Watt
В	24 Watt	D. 16 Watt	
74	esin truk Pak Bonar mempuny 6 watt maka daya keluaran me . 7,460 .10 ⁵ watt C	esin dengan efisiensi mesin 90	
В	$7,460.10^4$ watt	$0.6,714.10^4$ watt	
	erak bolak-balik melalui suatu da yang sama dinamakan	titik yang sama dan berula	ing-ulang dengan
A	. Frekuensi	C. Getaran	E. Periode
В	Gelombang	D. Amplitudo	

pada gambar di sampi	•	
berayun dari A, maka u	•	
satu ayunan yang benar a	adalah	
A. A-B-C-B-A		
B. A-B-C-B-C	,	RO C
C. A-C-B-C-A		5
D. A-B-A-C-A		
E. A-B-C-C-A		
37. Ketika beban berada di	bawah posisi kesetimbanga	n, beban mengalami gaya
ke atas, dan ketika b	eban berada di atas posis	si kesetimbangan, beban
mengalami gaya ke baw	ah. Selama bergetar gaya te	rsebut selalu mengarah ke
posisi kesetimbangan. G	aya tersebut adalah	
A. Gaya gravitasi	C. Gaya pemulih	E. Gaya dorong
B. Gaya gesek	D. Gaya tarik	
38. Bandul bermassa 500 gr	ram digantungkan pada tali	sepanjang 20 cm. Bandul
disimpangkan sejauh 3	cm dari titik setimbangny	ya, kemudian dilepaskan.
Apabila percepatan grav	vitasi bumi 9,8 m/s², gaya p	emulih yang bekerja pada
bandul adalah		
A. 4,9 N	C. 0,735 N	E. 3 N
B. 0,98 N	D. 2,45 N	
39. Persamaan gerak harmor	nis sederhana sebuah benda	Y=0,5 sin 40πt. Besarnya
frekuensi benda itu adala	ıh	
A. 0,1 Hz	C. 10 Hz	E. 200 Hz
B. 1,0 Hz	D. 20 Hz	
40. Seorang anak bermain	ayunan dengan tali pengga	intung sepanjang 2,45 m.
Apabila percepatan	gravitasi bumi 9,8	m/s ² , periode ayunan
sebesar		
A. $\pi/2$ s	C. 1,5 π s	E. 3π s
B. πs	D. 2π s	
41. Persamaan gerak harmor	nik sederhana sebuah benda	$Y=0,1 \sin 20\pi t$. Besarnya
periode benda itu adalah		
A. 1,0 s	C. 0,2 s	E. 0,25 s
B. 0,1 s	D. 0,5 s	
42. Sebuah benda bergetar h	armonis dengan amplitudo 4	4 cm. Pada jarak 2 cm dari
posisi setimbang kecepa	tan dan percepatan partikel	memilki besar yang sama.
periodenya adalah		
Α. π s	$C^{\frac{2\pi}{3}}$ s	E. $\frac{\sqrt{3}}{2\pi}s$
	$\sqrt{3}$	2π
B. $2\pi \sqrt{3}s$	C. $\frac{2\pi}{\sqrt{3}}s$ D. $\frac{\sqrt{3}}{\pi}s$	
	10	

36. Sebuah bandul berayun dengan pola seperti

43. Ada sebuah ayunan sederhana yang punya gravitasi 9,8 m		-
adalah		
C. 5 m	C. 3 m	E. 1 m
D. 3,5 m	D. 2,5 m	
44. Suatu pegas bergetar harmonik, l	•	_
A. $\frac{1}{2\pi}\sqrt{\frac{m}{k}}$	$. \ 2\pi \sqrt{\frac{k}{m}}$ $. \frac{1}{2\pi} \sqrt{\frac{g}{l}}$	E. $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$
B. $2\pi\sqrt{\frac{l}{g}}$ D	$\cdot \frac{1}{2\pi} \sqrt{\frac{g}{l}}$	
45. Besarnya periode suatu ayunan s	ederhana bergantung pada	
(1) Panjang tali		
(2) Massa benda		
(3) Percepatan gravitasi		
(4) Amplitudo		
Pernyataan diatas yang benar		
A. (1), (2), dan (3)	C. (2) dan (3) E. (1),	(2), (3), dan (4)
B. (1) dan (3)	D. (4)	
46. Sebuah pegas digantungkan vert 100 gram sehingga panjangnya hingga beban bergetar harmonil adalah	bertambah 10 cm. Beban ber	gerak ke bawah
A. 1,6 Hz	C. 3,1 Hz	E. 5,0 Hz
B. 2,5 Hz	D. 4,8 Hz	,-
47. Sebuah beban bermassa 250 g memiliki konstanta 100 N/m ke selaras, maka besar periode getan A. 0,1 π s	gram digantung dengan sebu emudian disimpangkan hingga rnnya adalah	
Β. 1 π s	D. 10 π s	
	rafik T ² (sl)	
percobaan getaran pegas. Dua percobaan getaran pegas. Dua percobaan disusun seri. Tet susunan pegas adalah	oegas oegas capan N/m	
C. 20 N 1 WIII	U	400 m

49.	Contoh-contoh benda dalan prinsip getaran harmonis ada	-	nri yang bekerja berdasarkan
	A. Jembatan yang bergoyar		
	B. Ayunan di taman berma		dul klasik
	C. shocbreaker, ketapel	71 6 73	
	D. ketapel, jam bandul klas	ik	
	E. jembatan bergoyang kar		
50.	Semua partikel melakuan ge	erakan harmonis denga	an panjang lintasannya 8 cm.
	Energi kinetik akan sam	na dengan energi p	otensial ketika simpangan
	getarannya adalah	•••	
	A. 2 cm	C. $3\sqrt{2}$	E. 2 cm
	B. $2\sqrt{2}$ cm	D. 4 cm	
51.		-	an amplitudo 2A. Pada saat cepatan maksimum, maka
	A. 1/3 A	C. ¼ A	E. $\frac{\sqrt{3}}{2}$ A
	B. ½ A	D. A	$\mathbf{L}.\frac{1}{2}\mathbf{A}$
52.		2,11	nik dengan amplitudo 0,2 m.
	-	=	5 x 103 J. Jika fase awalnya
	450, persamaan getaran ters	•	•
	A. $y = 0.2 \sin 2t$	$y = 0.2 \sin\left(2t + \frac{\pi}{4}\right)$	$E.y = 0.2 \sin\left(\frac{1}{2}t + \frac{\pi}{4}\right)$
	B. $y = 0.2 \sin \frac{t}{2}$	0. $y = 0.2 \sin(2t - \frac{\pi}{4})$	
53.	Sebuah benda melakukan ge	erak harmonik dengan	persamaan $y = 40 \sin (10\pi t)$
	$+\pi/6$), y dalam cm dan	t dalam s. Kecepa	atan partikel saat t =2 s
	sebesar		
	A. 2π m/s	C. $\pi \sqrt{3}$ m/s	E. $2\pi \sqrt{3}$ m/s
	B. $2\pi \sqrt{2} \text{ m/s}$	D. 2 m/s	
54.	Sebuah balok bermassa 0,	5 kg dihubungkan d	engan sebuah pegas ringan
	dengan konstanta 200 N/m	n. Kemudian sistem t	ersebut berosilasi harmonis.
	Jika diketahui simpangan	maksimumnya adala	ah 3 cm, maka kecepatan
	maksimumnya adalah		
	A. 0.1 m/s	C. 1 m/s	E. 2 m/s
	B. 0,6 m/s	D. 1,5 m/s	
55.			ana dengan amplitudo A dan
			sama dengan 4/5 kecepatan
	maksimumnya, percepatann	·	(4)
	A. $-\left(\frac{4}{5}\right)A\omega^2$	$C \left(\frac{1}{5}\right) A\omega^2$	E. $\left(\frac{4}{5}\right)$ A ω^2
	B. $-\left(\frac{3}{5}\right)A\omega^2$	D. $\left(\frac{3}{5}\right)$ A ω^2	

56. Dua buah osilator berge	tar dengan fase sama pada	t=0. Frekuensi getaran 10
Hz dan 40 Hz. Setel	ah 5/4 sekon, kedua get	aran itu berselisih sudut
fase		
A. 0^{0}	C. 45°	E. 180^{0}
B. 30^{0}	D. 90^{0}	
57. Dua buah partikel mela	kukan gerak harmonic dan	mulai bergerak dari titik
	ah yang sama. Setiap partil n sudut fase kedua gerak p	=
sebesar		
A. π rad	C. $8 \pi \text{ rad}$	E. 15 π rad
B. $2\pi \text{ rad}$	D.10 π rad	'1 1 1 1
58. Jika ada sebuah titik m	_	4
simpangan terbesar ada	alah A. Pada saat simpan	ganya $\frac{1}{2}$ A $\sqrt{2}$, maka fase
getaran titik tersebut terh	nadap garis keseimbangan ad	dalah
A. $\frac{1}{2}$	C. $\frac{1}{16}$	E. $\frac{1}{64}$
B. $\frac{1}{8}$	$D.\frac{1}{32}$	04
O	32	C . 111
59. Frekuensi suatu titik yan	= =	arnya tase setelah bergetar
1/12 sekon adalah		
A. 0	C. $\frac{1}{6}$	E. 1
B. $\frac{1}{5}$	C. $\frac{1}{6}$ D. $\frac{5}{6}$	
60. Benda bermassa 2 kg	bergetar harmonis sesua	i dengan persamaan x =
_	ergi kinetik maksimumnya	
A. 9 J	C. 25 J	E. 49 J
B. 16 J	D. 36 J	
61. Sebuah pegas dengan l	konstanta k diberi beban	yang massanya m. Benda
	ngan amplitudo A. Energi k	-
simpanganya ½ amplitud	lo ialah	
A. $\frac{1}{8}$ kA ²	C. $\frac{3}{8}$ kA ²	E. $\frac{5}{8}$ kA ²
B. $\frac{1}{4}$ kA ²	D. $\frac{1}{2}$ kA ²	8
62. Benda bergetar selaras	L	gan tatanan gaya 80 N/m
-	ebut 20 cm dan kecepatan	
Massa benda tersebut be		maksimum secesar 4 m/s.
A. 1 kg	C. 0,4 kg	E. 0,1 kg
B. 0,8 kg	D. 0,2 kg	v,1 mg
63. Sebuah benda bermassa		rsamaan $v = 0.1 \sin 100 t$.
	dan t dalam sekon. Energi	
sebesar		, , ,

A. 100 J C. 20 J E. 50 J B. 75 J D. 25 J 64. Grafik disamping ini menunjukkan grafik F hubungan antara perpanjangan pegas (x), karena pengaruh gaya (F). 1 Bila pegas ditarik dengan gaya 25 N, maka pertambahan panjang pegas dan energi potensial pegas berturut-turut adalah..... A. 7,5 cm, 0,56 joule B. 10 cm, 1,06joule C. 12,5 cm, 1,56 joule D. 15 cm, 2,06 joule E. 17,5 cm, 2,56 joule 65. Pada saat energi kinetik benda melakukan gerak harmonis sederhana sama dengan energi potensialnya, maka...... C. Sudut fasenya 450 A. Sudut Fasenya 1800 E. Percepatannya Nol B. Fasenya ¾ D. Fasenya 1/4 66. Perubahan energi potensial maksimum suatu benda yang bergerak harmonik pada ujung pegas bila amplitudonya diperbesar dua kali, dibandingkan dengan energi semula adalah..... A. Setengah kali C. Dua kali E. Empat kali D. Tiga kali B. Sama 67. Benda bermassa 20 gram melakukan gerak harmonik sederhana dengan periode 8 sekon. Kecepatan benda setelah 1 sekon melewati titik setimbang adalah 4 cm/s. Energi mekanik getaran tersebut adalah..... C. $13 \times 10^{-6} \text{ J}$ C. 32 x 10⁻⁶ J $E.84 \times 10^{-6} J$ D. 26 x 10⁻⁶ J D. $72 \times 10^{-6} \text{ J}$

KISI-KISI HASIL BELAJAR VALID

NAMA SEKOLAH : SMA NEGERI 5 JENEPONTO

MATA PELAJARAN : FISIKA

MATERI PELAJARAN: USAHA DAN ENERGI DAN GERAK HARMONIK SEDERHANA

KELAS/SEMESTER : XI/I

TAHUN AJARAN : 2017/2018

Kompetensi Dasar

3.3 Menganalisis konsep energi, usaha, hubungan usaha dan perubahan energi, dan hukum kekekalan energi untuk menyelesaikan permasalahan gerak dalam kejadian sehari-hari

- 4.3 Memecahkan masalah dengan menggunakan metode ilmiah terkait dengan konsep gaya, dan kekekalan energi
- 3.4 Menganalisis hubungan antara gaya dengan gerak getaran
- 4.4 Merencanakan dan melaksanakan percobaan getaran harmonik pada ayunan bandul dan getaran pegas

Indikator				Kunci	Ra	nah 🛚	Kogni	itif
Pembelajaran	Indikator Soal	S	oal	Jawaba n	C ₁	C_2	C ₃	C ₄
Menjelaskan konsep usaha dalam fisika	Menjelaskan pengertian usaha	Perkalian antara besa adalah pengertian dar A. Energi B. Usaha C. Daya	nran gaya dan perpindahan i D. Energi Kinetik E. Energi Potensial	В	V			
	Menjelaskan usaha sama dengan nol	•	nobil yang sedang mogok, tetap tak bergerak. Usaha u adalah D. Maksimum	В		V		

		B. Nol E. Minimum C. Tidak henti-hentinya		
2. Membedakan contoh termasuk usaha dan bukan usaha menurut fisika dalam kehidupan sehari-hari	Menyebutkan contoh termasuk usaha dalam kehidupan sehari-hari	3. Berdasarkan dari beberapa pernyataan dibawah ini, yang bukan termasuk contoh usaha dalam konsep fisika kaitannya kehidupan sehari-hari yaitu A. Melempar batu B. Mendorong meja C. Memindahkan lemari D. menenteng tas E. berusaha mendapatkan nilai yang tinggi	V	
3. Menghitung persamaan usaha untuk menyelesaikan permasalahan dalam kehidupan sehari-hari	Menghitung besar usaha pada bidang datar	4. Sebuah balok dengan massa M berada pada bidang datar, balok tersebut ditarik oleh gaya sebesar 30 N. Jika balok berpindah sejauh 50 cm, maka usaha yang dilakukan oleh gaya tersebut adalah		√
	Menghitung besar usaha dari gaya yang membentuk sudut terhadap perpindahan	 5. Fahmi mendorong sebuah meja dengan gaya 100 N sejauh 10 m. Apabila Fahmi mendorong meja tersebut dengan sudut 30° terhadap arah vertikal, maka usaha yang dilakukan Fahmi adalah A. 0,5√3 kJ C.0,5 kJ E. 0,1 kJ 		√

		B. 0,1 <i>kJ</i> D. 0,8 <i>kJ</i>			
	Menghitung besar usaha dari gaya yang membentuk sudut terhadap perpindahan pada bidang datar	6. Sebuah balok ditarik gaya F = 120 N yang membentuk sudut 37° terhadap arah horizontal seperti diperlihatkan pada gambar di samping. Jika balok bergeser sejauh 10 m, maka usaha yang dilakukan pada balok tersebut adalah F= 120 N A. 1200 Joule C.720 Joule E. 120 Joule B. 960 Joule D. 600 Joule	В		√
4. Memformulasika n hubungan antara gaya dan perpindahan dalam bentuk grafik	Menghitung besar usaha dari grafik hubungan F-s	7. Perhatikan grafik. Usaha dilakukan benda yang mendapat gaya F sehingga berpindah sejauh 10 m adalah F(N) 10 10 5 10 Δs (m)	D		√

5. Menjelaskan konsep energi	Menjelaskan pengertian energi	A. 50 J C. 150 J E. 250 J B. 100 J D. 200 J 8. Benda massa m dan bergerak dengan kelajuan v maka benda dikatakan memiliki A. Energi Potensial D. Energi Panas B. Energi Kinetik E. Energi Bunyi C. Energi Mekanik	В	V		
6. Menghitung persamaan energi kinetik dan energi potesial	Menghitung energi kinetic	9. Sebuah benda dengan massa m bergerak dengan kecepatan V sehingga mempunyai energi kinetik E joule. Jika massa benda dibuat menjadi 1/2 kali massa mula-mula dari kecepatannya dibuat 2 kali kecepatan semula, maka energi kinetiknya menjadi A.E joule C. 1/4E joule E. 2E joule B. 3E joule D. 4E joule	E		7	
	Menghitung energi potensial tiga buah benda	10. Tiga buah benda yang masing-masing massanya m _A = 2 kg, m _B = 4 kg dan m _C = 3 kg terletak di tangga seperti gambar disamping. Tiap tangga ketinggiannya 30 cm. Jika energi potensial massa B bernilai	A			√

		nol, maka energi potensial m_A dan m_C adalah				
	Menghitung perbandingan energi potensial 2 buah benda	11. Benda A bermassa 1,5 kg berada di atas meja setinggi 120 cm dan benda B bermassa 5 kg berada di atas kursi setinggi 60 cm. Maka perbandingan energi potensial benda A dan B adalah	E		√	
7. Memformulasika n hubungan antara usaha dan energi kinetik dalam kejadian sehari-hari	8. Menganalisis hubungan antara usaha dengan energi kinetik	12. Benda A memiliki massa 4 kg dan kelajuannya 2 m/s. Bena B memiliki massa 2 kg dan kelajuannya 4 m/s. Kedua benda bergerak pada arah yang sama. Masing-masing benda kemudian menerima gaya sebesar F yang arahnya berlawanan dengan arah gerak kedua benda sampai masing-masing benda berhenti. Pernyataan dibawah ini yang benar adalah	C			√

		 A. Kedua benda menempuh jarak yang sama B. Benda A menempuh jarak 2 kali lebih jauh dari benda B C. Benda B menempuh jarak 2 kali lebih jauh dari benda A D. Benda A menempuh jarak 4 kali lebih jauh dari benda B E. Benda B menempuh jarak 4 kali lebih jauh dari benda A 				
9. Memformulasika n hubungan antara usaha dan energi kinetik dalam kejadian sehari-hari	Menghitung usaha kaitanya dengan energi potensial	13. Sebuah bola bermassa 500 gram dijatuhkan dari atas gedung setinggi 2 m. Besar usaha selama perpindahan bola tersebut adalah A.50 J C. 25 J E. 10 J B. 30 J D. 20 J	E		√	
	Menghitung usaha kaitanya energi potensial pada gerak jatuh bebas	14. Sebuah benda massanya 2 kg jatuh bebas dari puncak gedung bertingkat yang tingginya 100 m. Apabila gesekan dengan udara diabaikan dengan g = 10 m/s² maka usaha yang dilakukan oleh gaya berat sampai pada ketinggian 20 m dari tanah adalah	A		V	
	Menjelaskan	15. Sebuah benda melakukan gerakan jatuh bebas,	D	\checkmark		

	energi potensial pada gerak jatuh bebas	semakin kebawah A. Energi kinetiknya berkurang B. Energi potensialnya bertambah C. Energi mekaniknya berkurang D. Energi mekanikya tetap E. Energi kinetiknya tetap				
10. Menghitung rumus hukum kekekalan energi mekanik	Menghitung kecepatan sebuah benda	 16. Sebuah bola bermassa 2 kg bergerak jatuh bebas dari ketinggian 20 meter di atas permukaan tanah. Jika percepatan gravitasi 10 m/s², maka kecepatan bola pada saat ketinggianya 5 meter di atas permukaan tanah adalah A. 6 m/s C. 10 m/s E. 10√2 m/s B. 8 m/s D. 10√3 m/s 	D		1	
		17. Sebuah benda jatuh dari ketinggian 6 meter dari atas tanah. Kecepatan benda tersebut pada saat mencapai ketinggian 1 meter dari tanah jika percepatan gravitasi bumi 10 m/s² adalah	E		√	

11. Menjelaska n konsep daya	Menghitung besar daya	18. Sebuah kendaraan dipercepat dari 10 m/s² menjadi 20 m/s² dalam waktu 10 detik. Jika massa kendaraan tersebut adalah 1 ton, maka daya yang digunakan untuk melakukan percepatan tersebut adalah A. 20 kW C. 25 kW E. 15 Kw B. 28 kW D. 20 kW	E		V	
12. Menghitung persamaan daya kaitannya dengan usaha dan energi	Menghitung daya rata-rata	19. Seorang murid membawa beban bermassa 20 kg ke tempat pada ketinggian 6 meter dengan menggunakan tangga. Jika waktu yang dibutuhkan oleh murid untuk tiba di tempat itu adalah 25 detik, maka daya rata-rata yang dikeluarkan oleh murid itu adalah A. 48 Watt C. 20 Watt E.10 Watt B. 24 Watt D. 16 Watt	A		√	
13. Menjelaska n konsep gerak harmonis sederhana	Mendefenisikan pengertian gerak harmonik sederhana	20. Gerak bolak-balik melalui suatu titik yang sama dan berulang-ulang dengan pola yang sama dinamakan A. Frekuensi D. Amplitudo B. Getaran E. Periode C. Gelombang	В	1		
	Menentukan satu getaran pada ayunan bandul	21. Sebuah bandul berayun dengan pola seperti pada gambar di samping. Jika bandul mulai berayun dari A, maka urutan satu getaran atau satu	A	V		

		ayunan yang benar adalah				
		A. A-B-C-B-A B. A-B-C-B-C E. A-B-C-C-A				
		C. A-C-B-C-A				
14. Menjelaska n konsep gaya pemulih pada getaran harmonis	Menghitung besar gaya pemulih pada bandul	22. Bandul bermassa 500 gram digantungkan pada tali sepanjang 20 cm. Bandul disimpangkan sejauh 3 cm dari titik setimbangnya, kemudian dilepaskan. Apabila percepatan gravitasi bumi 9,8 m/s², gaya pemulih yang bekerja pada bandul adalah A. 4,9 N C. 0,735 N E. 3 N B. 0,98 N D. 2,45 N	С		V	
	Menghitung besar gaya pemulih pada bandul	23. Sebuah benda bermassa 50 gram bergerak harmonik sederhana dengan amplitude 10 cm dan periode 0,2 s. Besar gaya yang bekerja pada	В		V	

		system saat simpangannya setengah amplitudo adalah sekitar				
15. Menghitung besar periode dan frekuensi pada gerak harmonic sederhana	Menghitung periode pada ayunan sederhana	24. Seorang anak bermain ayunan dengan tali penggantung sepanjang 2,45 m. Apabila percepatan gravitasi bumi 9,8 m/s², periode ayunan sebesar A. $\pi/2$ s C.1,5 π s E. 3π s B. π D. 2π s	В		√	
16. Menghitung periode dan frekuensi pada pegas	Menghitung periode pada pegas digantungi beban	25. Sebuah beban bermassa 250 gram digantung dengan sebuah pegas yang memiliki konstanta 100 N/m kemudian disimpangkan hingga terjadi getaran selaras, maka besar periode getarnnya adalahs A. 0,1 π C. 0,5 π E. 5 π B. 1 π D.10 π	A		V	
17. Memformul asikan hubungan antara periode kuadrat dengan massa pada pegas	Menghitung konstanta pada pegas	26. Gambar berikut adalah grafik hubungan T ² terhadap m dari percobaan getaran pegas. Dua pegas masing-masing identik dengan pegas percobaan disusun seri. Tetapan susunan pegas adalah	A			√

18. Menghitung	Menghitung	T ² (s ¹) 0,04 0 400 m A. 20 π ² N/m B. 40 π N/m C. 20 π N/m 27. Semua partikel melakuan gerakan harmonis				
persamaan simpangan	simpangan dari sebuah partikel	dengan panjang lintasannya 8 cm. Energi kinetik akan sama dengan energi potensial ketika simpangan getarannya adalah A. 2 cm C. 3√2 E. 2 cm B. 2√2 cm D. 4 cm	В		\checkmark	
19. Membuktik an persamaan kecepatan dan percepatan pada gerak harmonis	Mengitung kecepatan pada gerak harmonis sederhana	28. Sebuah benda melakukan gerak harmonik dengan persamaan $y = 40 \sin (10\pi t + \pi/6)$, y dalam cm dan t dalam s. Kecepatan partikel saat $t = 2$ s sebesar A. 2π m/s C. π $\sqrt{3}$ m/s E. 2π $\sqrt{3}$ m/s	E			V

sederhana		B. $2\pi \sqrt{2} \text{ m/s}$ D. 2 m/s				
20. Menghitung sudut fase dan beda fase pada gerak harmonis sederhana	Menghitung sudut fase dalam dua buah osilator	29. Dua buah osilator bergetar dengan fase sama pada t=0. Frekuensi getaran 10 Hz dan 40 Hz. Setelah 5/4 sekon, kedua getaran itu berselisih sudut fase A. 0° C. 45° E. 180° B. 30° D. 90°	E		√	
		30. Jika ada sebuah titik materi melakukan getaran harmonik sederhana dengan simpangan terbesar adalah A. Pada saat simpanganya ½ A√2, maka fase getaran titik tersebut terhadap garis keseimbangan adalah A. ½ C. ½ E. ⅙ B. ½ B. ½ D. ½	В		V	
21. Menghitung persamaan energi pada gerak harmonis harmonis	Menghitung massa benda pada pegas	31. Benda bergetar selaras sederhana pada pegas dengan tetapan gaya 80 N/m. Amplitudo getaran tersebut 20 cm dan kecepatan maksimum sebesar 4 m/s. Massa benda tersebut bernilai				
	Menghitung	32. Benda bermassa 20 gram melakukan gerak	С			

energi mekanik	harmonik sederhana dengan periode 8 sekon.		
getaran harmonik	Kecepatan benda setelah 1 sekon melewati titik		
narmonik	setimbang adalah 4 cm/s. Energi mekanik		
	getaran tersebut adalah		
	A. $13 \times 10^{-6} \text{ J}$ D. $72 \times 10^{-6} \text{ J}$		
	B. 26 x 10 ⁻⁶ J E. 26 x 10 ⁻⁶ J		
	C. $32 \times 10^{-6} \text{ J}$		

LEMBAR SOAL PRE TES

: Fisika Mata Pelajaran

: Usaha & Energi dan Gerak Harmonis Sederhana Materi

Kelas/Semester : XI/1

: 90 menit Waktu

Petunjuk Mengerjakan Soal

- 1. Berdoalah sebelum dan sesudah mengerjakan soal
- 2. Tuliskan identitas anda ke dalam lembar jawab yang disediakan.
- 3. Bacalah soal dengan teliti dan kerjakan sesuai petunjuk khusus
- 4. Tersedia waktu 90 menit untuk mengerjakan tes tersebut.

Petunjuk Khusus

Pilihlah satu jawaban dengan memberi tanda (X) pada lembar jawaban yang anda anggap benar, dan periksa.

Contoh:

В \mathbf{C} D E Pilihan semula X X C Ø В E Dibetulkan menjadi 1. Perkalian antara besaran gaya dan perpindahan adala pengertian dari..... A. Energi C. Energi Kinetik E. Daya B. Usaha D. Energi Potensial 2. Wahyu mendorong mobil yang sedang mogok, tetapi mobil tersebut tetap tak bergerak. Usaha yang dilakukan Wahyu adalah...... E. Minimum A. Tetap C. Tidak henti-hentinya B. Nol D. Maksimum 3. Berdasarkan dari beberapa pernyataan dibawah ini, yang bukan termasuk

- contoh usaha dalam konsep fisika kaitannya kehidupan sehari-hari vaitu.....
 - A. Melempar batu
 - B. Mendorong meja
 - C. Memindahkan lemari
 - D. Menenteng tas

- E. Berusaha mendapatkan nilai yang tinggi
- 4. Sebuah balok dengan massa M berada pada bidang datar, balok tersebut ditarik oleh gaya sebesar 30 N. Jika balok berpindah sejauh 50 cm, maka usaha yang dilakukan oleh gaya tersebut adalah......

A. 25 J

C. 15 J

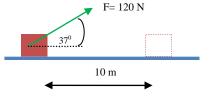
E. 5 J

B. 20 J

D. 10

5. Fahmi mendorong sebuah meja dengan gaya 100 N sejauh 10 m. Apabila Fahmi mendorong meja tersebut dengan sudut 30⁰ terhadap arah vertikal, maka usaha yang dilakukan Fahmi adalah.......

A. $0,5 \sqrt{3} kJ$


C. 0,5 *kJ*

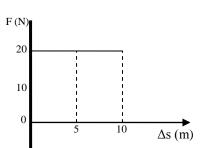
E. 1 *kJ*

B. $0.5 \sqrt{2} kJ$

D. 0,8 kJ

6. Sebuah balok ditarik gaya F = 120 N yang membentuk sudut 37° terhadap arah horizontal seperti diperlihatkan pada gambar di samping.
 Jika balok bergeser sejauh 10 m, maka usaha yang dilakukan pada balok tersebut adalah......

A. 960 Joule


C. 1200 Joule

E. 69 Joule

B. 690 Joule

D. 96 Joule

 Perhatikan grafik. Usaha dilakukan benda yang mendapat gaya F sehingga berpindah sejauh 10 m adalah......

A. 50 J

C. 100 J

E. 250 J

B. 150 J

D. 200 J

8. Benda massa m dan bergerak dengan kelajuan v maka benda dikatakan memiliki

A. energi potensial

C. energi mekanik

E. energi bunyi

B. energi kinetik

D. energi panas

9. Sebuah benda dengan massa m bergerak dengan kecepatan V sehingga mempunyai energi kinetik E joule. Jika massa benda dibuat menjadi 1/2 kali

massa mula-mula dari kecepatannya dibuat 2 kali kecepatan semula, maka energi kinetiknya menjadi

A.E joule

C. ¼ E joule

E. 2 E joule

B.3 E joule

D. 4 E joule

10. Tiga buah benda yang masing-masing massanya m_A = 2 kg, m_B = 4 kg dan m_C = 3 kg terletak di tangga seperti gambar disamping..Tiap tangga ketinggiannya 30 cm. Jika energi potensial massa B bernilai nol, maka energi potensial m_A dan m_C adalah......

- A. $EP_A = -6 J$, dan $EP_C = 18 J$
- B. $EP_A = -18 \text{ J}$, dan $EP_C = 6 \text{ J}$
- C. $EP_A = 6 J$, dan $EP_C = -18 J$
- D. $EP_A = 6 J$, dan $EP_C = 18 J$
- E. $EP_A = -6 J$, dan $EP_C = -18 J$
- 11. Benda A bermassa 1,5 kg berada di atas meja sehingga 120 cm dan benda B bermassa 5 kg berada di atas kursi setinggi 60 cm. Maka perbandingan energi potensial benda A dan B adalah...........
 - A. 5:1

C. 1:3

E. 3:5

B. 3:1

D. 5:3

- 12. Benda A memiliki massa 4 kg dan kelajuannya 2 m/s. Benda B memiliki massa 2 kg dan kelajuannya 4 m/s. Kedua benda bergerak pada arah yang sama. Masing-masing benda kemudian menerima gaya sebesar F yang arahnya berlawanan dengan arah gerak kedua benda sampai masing-masing benda berhenti. Pernyataan dibawah ini yang benar adalah.........
 - A. Kedua benda menempuh jarak yang sama
 - B. Benda A menempuh jarak 2 kali lebih jauh dari benda B
 - C. Benda B menempuh jarak 2 kali lebih jauh dari benda A
 - D. Benda A menempuh jarak 4 kali lebih jauh dari benda B
 - E. Benda B menempuh jarak 4 kali lebih jauh dari benda A
- 13. Sebuah bola bermassa 500 gram dijatuhkan dari atas gedung setinggi 2 m. Besar usaha selama perpindahan bola tersebut adalah...........

A.	50 J	C. 25 J	E. 10 J
В.	30 J	D. 20 J	
14. Se	buah benda massanya 2 kg jat	uh bebas dari puncak gedung	bertingkat yang
tin	gginya 100 m. Apabila gesek	an dengan udara diabaikan d	$lan g = 10 m/s^2$
ma	aka usaha yg dilakukan oleh g	gaya berat sampai pada keting	ggian 20 m dari
tar	nah adalah		
A.	1600 joule	C. 400 joule	E. 100 joule
B.	800 joule	D. 200 joule	
15. Se	buah benda melakukan geraka	n jatuh bebas, semakin kebaw	ah
A.	Energi kinetiknya berkurang		
B.	Energi potensialnya bertamb	ah	
C.	Energi mekaniknya berkuran	g	
D.	Energi mekanikya tetap		
E.	Energi kinetiknya tetap		
16. Se	buah bola bermassa 2 kg berg	gerak jatuh bebas dari ketingg	gian 20 meter di
ata	as permukaan tanah. Jika perce	epatan gravitasi 10 m/s², maka	a kecepatan bola
pa	da saat ketinggianya 5 meter d	i atas permukaan tanah adalah	l
A.	6 m/s	C. 10 m/s	E. $10\sqrt{2 m/s}$
B.	8 m/s	D. $10\sqrt{3} \ m/s$	
17. Se	buah benda jatuh dari ketingg	ian 6 meter dari atas tanah. K	Kecepatan benda
ter	sebut pada saat mencapai ke	etinggian 1 meter dari tanah	jika percepatan
gra	avitasi bumi 10 m/s² adalah		
A.	100 m	C. 50 m	E. 10 m
B.	75 m	D. 25 m	
18. Se	buah kendaraan dipercepat da	nri 10 m/s² menjadi 20 m/s² o	dalam waktu 10
de	tik. Jika massa kendaraan ters	ebut adalah 1 ton, maka daya	yang digunakan
un	tuk melakukan percepatan ters	ebut adalah	
A.	20 kW	C. 25 kW	E. 15 kW
В.	28 kW	D. 20 kW	
19. Se	orang murid membawa beban	bermassa 20 kg ke tempat pa	ada ketinggian 6

meter dengan menggunakan tangga. Jika waktu yang dibutuhkan oleh murid

oleh murid itu adalah..... A. 48 Watt C. 20 Watt E. 10 Watt B. 24 Watt D. 16 Watt 20. Gerak bolak-balik melalui suatu titik yang sama dan berulang-ulang dengan pola yang sama dinamakan . . . A. Frekuensi C. Getaran E. Periode D. Amplitudo B. Gelombang 21. Sebuah bandul berayun dengan pola seperti pada gambar di samping. Jika bandul mulai berayun dari A, maka urutan satu getaran atau satu ayunan yang benar adalah A. A-B-C-B-A B. A-B-C-B-C C. A-C-B-C-A D. A-B-A-C-A E. A-B-C-C-A 22. Bandul bermassa 500 gram digantungkan pada tali sepanjang 20 cm. Bandul disimpangkan sejauh 3 cm dari titik setimbangnya, kemudian dilepaskan. Apabila percepatan gravitasi bumi 9,8 m/s², gaya pemulih yang bekerja pada bandul adalah...... A. 4,9 N C. 0,735 N E. 3 N B. 0,98 N D. 2,45 N 23. Persamaan gerak harmonis sederhana sebuah benda Y=0,5 sin 40πt. Besarnya frekuensi benda itu adalah..... A. 0,1 Hz C. 10 Hz E. 200 Hz D. 20 Hz B. 1,0 Hz 24. Seorang anak bermain ayunan dengan tali penggantung sepanjang 2,45 m. m/s^2 , bumi 9,8 periode ayunan Apabila percepatan gravitasi sebesar.....s A. $\pi/2$ C. 1,5 π E. 3π

untuk tiba di tempat itu adalh 25 detik, maka daya rata-rata yang dikeluarkan

	Β. π	D. 2π	
25.	Sebuah beban bermassa 250 g	ram digantung dengan sebu	ah pegas yang
	memiliki konstanta 100 N/m ke	mudian disimpangkan hingga	ı terjadi getaran
	selaras, maka besar periode getar	nnya adalahs	
	Α. 0,1 π	C. 0,5 π	Ε. 5 π
	Β. 1 π	D. 10 π	
26.	Gambar berikut adalah	grafik $T^2(s^{-1})$	
	hubungan T ² terhadap m	dari	
	percobaan getaran pegas. Dua	pegas 0,04	
	masing-masing identik dengan	pegas	
	percobaan disusun seri. Te	etapan	
	susunan pegas adalah		
	A. $20 \pi^2 \text{ N/m}$ D. 40 D	N/m 0	400 m
	B. $40 \pi \text{ N/m}$ E. 20	N/m	
	C. 20 π N/m		
27.	Semua partikel melakukan geral	kan harmonis dengan panjan	g lintasannya 8
	cm. Energi kinetik akan sama	dengan energi potensial ke	tika simpangan
	getarannya adalah		
	A. 2 cm	C. $3\sqrt{2}$ cm	E. 2 cm
	B. $2\sqrt{2}$ cm	D. 4 cm	
28.	. Sebuah benda melakukan gerak l	harmonik dengan persamaan	$y = 40 \sin(10\pi t)$
	$+\pi/6$), y dalam cm dan t d		
	sebesar		
	A. 2π m/s	C. $\pi \sqrt{3}$ m/s	E. $2\pi \sqrt{3}$ m/s
	B. $2\pi \sqrt{2} \text{ m/s}$	D. 2 m/s	
29.	. Dua buah osilator bergetar deng	an fase sama pada t=0. Freku	iensi getaran 10
	Hz dan 40 Hz. Setelah 5/4	sekon, kedua getaran itu l	perselisih sudut
	fase		
	A. 0^0	C. 45 ⁰	E. 180 ⁰
	B. 30^{0}	D. 90^{0}	

	simpangan	terbesar	adalah	A.]	Pada	saat	simpanganya	$\frac{1}{2}$ A	$\sqrt{2}$,	maka	fase
	getaran titil	k tersebut	terhada	o gar	is kes	eimb	angan adalah				
	A. $\frac{1}{2}$			C. $\frac{1}{1}$					E. $\frac{1}{6}$	<u>1</u> 4	
	B. $\frac{1}{8}$			D. $\frac{1}{32}$	<u>.</u> 2						
31.	Benda berg	getar sela	ras sede	rhana	a pad	a peg	gas dengan te	etapar	gay	/a 80]	N/m.
	Amplitudo	getaran t	ersebut	20 c	m da	n kec	epatan maks	imum	seb	esar 4	m/s.
	Massa bend	da tersebu	t bernila	i							
	A. 1 kg				C. 0,4	4 kg			E. 0	,1 kg	
	B. 0,8 kg				D. 0,	2 kg					
32.	Benda ber	massa 20) gram	mela	akuka	n ge	rak harmoni	k sec	lerha	na de	ngan
	periode 8 s	sekon. Ke	ecepatan	beno	da set	telah	1 sekon mel	ewati	titik	setim	bang
	adalah 4 cn	n/s. Energ	i mekan	ik ge	taran	terse	but adalah				
	A. 13 x 10)-6 J			C. 32	x 10	-6 J		E.84	4 x 10-	6 J

D. 72 x 10⁻⁶ J

B. $26 \times 10^{-6} \text{ J}$

30. Jika ada sebuah titik materi melakukan getaran harmonik sederhana dengan

LEMBAR SOAL POSS TES

Mata Pelajaran : Fisika

Materi : Usaha & Energi dan Gerak Harmonis Sederhana

Kelas/Semester : XI/1

Waktu : 90 menit

Petunjuk Mengerjakan Soal

1. Berdoalah sebelum dan sesudah mengerjakan soal

- 2. Tuliskan identitas anda ke dalam lembar jawab yang disediakan.
- 3. Bacalah soal dengan teliti dan kerjakan sesuai petunjuk khusus
- 4. Tersedia waktu 90 menit untuk mengerjakan tes tersebut.

Petunjuk Khusus

Pilihlah satu jawaban dengan memberi tanda (X) pada lembar jawaban yang anda anggap benar, dan periksa.

Contoh:

Pilihan semula : X B C D E

Dibetulkan menjadi : X B C X E

- 1. Perkalian antara besaran gaya dan perpindahan adala pengertian dari.....
 - A. Energi C. Energi Kinetik E. Daya
 - B. Usaha D. Energi Potensial
- 2. Benda A memiliki massa 4 kg dan kelajuannya 2 m/s. Benda B memiliki massa 2 kg dan kelajuannya 4 m/s. Kedua benda bergerak pada arah yang sama. Masing-masing benda kemudian menerima gaya sebesar F yang arahnya berlawanan dengan arah gerak kedua benda sampai masing-masing benda berhenti. Pernyataan dibawah ini yang benar adalah........
 - A. Kedua benda menempuh jarak yang sama
 - B. Benda A menempuh jarak 2 kali lebih jauh dari benda B
 - C. Benda B menempuh jarak 2 kali lebih jauh dari benda A
 - D. Benda A menempuh jarak 4 kali lebih jauh dari benda B
 - E. Benda B menempuh jarak 4 kali lebih jauh dari benda A
- 3. Berdasarkan dari beberapa pernyataan dibawah ini, yang bukan termasuk contoh usaha dalam konsep fisika kaitannya kehidupan sehari-hari yaitu......
 - A. Melempar batu
 - B. Mendorong meja

E. 5 J

E. 1 *kJ*

 $\Delta s(m)$

- C. Memindahkan lemari D. Menenteng tas E. Berusaha mendapatkan nilai yang tinggi 4. Sebuah balok dengan massa M berada pada bidang datar, balok tersebut ditarik oleh gaya sebesar 30 N. Jika balok berpindah sejauh 50 cm, maka usaha yang dilakukan oleh gaya tersebut adalah..... A. 25 J C. 15 J B. 20 J D. 10 5. Fahmi mendorong sebuah meja dengan gaya 100 N sejauh 10 m. Apabila Fahmi mendorong meja tersebut dengan sudut 30⁰ terhadap arah vertikal, maka usaha yang dilakukan Fahmi adalah...... A. $0.5 \sqrt{3} kI$ C. 0,5 kJ B. $0.5\sqrt{2} kI$ D. 0,8 kJ 6. Sebuah balok ditarik gaya F = 120 N yang F= 120 N membentuk sudut 37° terhadap arah horizontal seperti diperlihatkan pada gambar di samping. Jika balok bergeser sejauh 10 m, maka usaha 10 m balok dilakukan pada tersebut yang adalah..... A. 960 Joule C. 1200 Joule E. 69 Joule B. 690 Joule D. 96 Joule 7. Perhatikan grafik. Usaha dilakukan benda F(N)yang mendapat gaya F sehingga berpindah sejauh 10 m adalah..... 20 A. 50 J C. 100 J E. 250 J 10 B. 150 J D. 200 J
- 8. Benda massa m dan bergerak dengan kelajuan v maka benda dikatakan memiliki E. energi bunyi

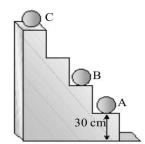
A. energi potensial C. energi mekanik B. energi kinetik D. energi panas

9. Wahyu mendorong mobil yang sedang mogok, tetapi mobil tersebut tetap tak bergerak. Usaha yang dilakukan Wahyu adalah......

C. Tidak henti-hentinya E. Minimum A. Tetap B. Nol D. Maksimum

10. Sebuah benda dengan massa m bergerak dengan kecepatan V sehingga mempunyai energi kinetik E joule. Jika massa benda dibuat menjadi 1/2 kali massa mula-mula dari kecepatannya dibuat 2 kali kecepatan semula, maka energi kinetiknya menjadi

A.E joule


C. ¼ E joule

E. 2 E joule

B. 3 E joule

D. 4 E joule

11. Tiga buah benda yang masing-masing massanya m_A = 2 kg, m_B = 4 kg dan m_C = 3 kg terletak di tangga seperti gambar disamping..Tiap tangga ketinggiannya 30 cm. Jika energi potensial massa B bernilai nol, maka energi potensial m_A dan m_C adalah......

A.
$$EP_A = -6 J$$
, dan $EP_C = 18 J$

B.
$$EP_A = -18 \text{ J}$$
, dan $EP_C = 6 \text{ J}$

C.
$$EP_A = 6 J$$
, dan $EP_C = -18 J$

D.
$$EP_A = 6 J$$
, dan $EP_C = 18 J$

E.
$$EP_A = -6 J$$
, dan $EP_C = -18 J$

12. Benda A bermassa 1,5 kg berada di atas meja sehingga 120 cm dan benda B bermassa 5 kg berada di atas kursi setinggi 60 cm. Maka perbandingan energi potensial benda A dan B adalah..........

A. 5:1

C. 1:3

E. 3:5

B. 3:1

D. 5:3

13. Sebuah bola bermassa 500 gram dijatuhkan dari atas gedung setinggi 2 m. Besar usaha selama perpindahan bola tersebut adalah...........

A. 50 J

C. 25 J

E. 10 J

B. 30 J

D. 20 J

14. Persamaan gerak harmonis sederhana sebuah benda Y=0,5 sin $40\pi t$. Besarnya frekuensi benda itu adalah......

A. 0,1 Hz

C. 10 Hz

E. 200 Hz

B. 1,0 Hz

D. 20 Hz

15. Sebuah benda massanya 2 kg jatuh bebas dari puncak gedung bertingkat yang tingginya 100 m. Apabila gesekan dengan udara diabaikan dan $g=10 \text{ m/s}^2$ maka usaha yg dilakukan oleh gaya berat sampai pada ketinggian 20 m dari tanah adalah.....

A. 1600 joule

C. 400 joule

E. 100 joule

B. 800 joule

D. 200 joule

- 16. Sebuah benda melakukan gerakan jatuh bebas, semakin kebawah
 - A. Energi kinetiknya berkurang
 - B. Energi potensialnya bertambah
 - C. Energi mekaniknya berkurang
 - D. Energi mekanikya tetap
 - E. Energi kinetiknya tetap

	tas permukaan tanah. Jika perce ada saat ketinggianya 5 meter d	= -	=
A	a. 6 m/s	C. 10 m/s	E. $10\sqrt{2 m/s}$
В	8. 8 m/s	D. $10\sqrt{3} \ m/s$	
18. S	ebuah benda jatuh dari ketingg	•	Kecepatan benda
	ersebut pada saat mencapai ke		-
	ravitasi bumi 10 m/s² adalah		
	a. 100 m	C. 50 m	E. 10 m
В	3. 75 m	D. 25 m	
19. S	ebuah kendaraan dipercepat da	ri 10 m/s ² menjadi 20 m/s ² d	dalam waktu 10
d	etik. Jika massa kendaraan terse	ebut adalah 1 ton, maka daya	yang digunakan
u	ntuk melakukan percepatan ters	ebut adalah	
A	a. 20 kW	C. 25 kW	E. 15 kW
В	3. 28 kW	D. 20 kW	
20. S	eorang murid membawa beban	bermassa 20 kg ke tempat pa	nda ketinggian 6
m	neter dengan menggunakan tan	gga. Jika waktu yang dibutuh	ıkan oleh murid
u	ntuk tiba di tempat itu adalh 25	5 detik, maka daya rata-rata y	ang dikeluarkan
0	leh murid itu adalah		
C	C. 48 Watt	C. 20 Watt	E. 10 Watt
Γ	D. 24 Watt	D. 16 Watt	
21. G	erak bolak-balik melalui suatu	titik yang sama dan berulan	ig-ulang dengan
p	ola yang sama dinamakan		
A	A. Frekuensi	C. Getaran	E. Periode
В	3. Gelombang	D. Amplitudo	
22. S	ebuah bandul berayun dengan	pola seperti pada	A
g	ambar di samping. Jika bandul	mulai berayun dari	
A	, maka urutan satu getaran atau	ı satu ayunan yang	
b	enar adalah		
A	A. A-B-C-B-A	Ø.	
	B. A-B-C-B-C	Α -	
	C. A-C-B-C-A		Ь
	O. A-B-A-C-A		
	. A-B-C-C-A		
	enda bergetar selaras sederhar		
	implitudo getaran tersebut 20 d	-	sebesar 4 m/s.
	Iassa benda tersebut bernilai		
A	A. 1 kg	C. 0,4 kg	E. 0,1 kg
В	8. 0,8 kg	D. 0,2 kg	

17. Sebuah bola bermassa 2 kg bergerak jatuh bebas dari ketinggian 20 meter di

24.	Bandul bermassa 500 gram diga	ntungkan pada tali sepanjang 2	20 cm. Bandul
	disimpangkan sejauh 3 cm dar	i titik setimbangnya, kemudia	an dilepaskan.
	Apabila percepatan gravitasi bun	ni 9,8 m/s², gaya pemulih yang	g bekerja pada
	bandul adalah		
	A. 4,9 N	C. 0,735 N	E. 3 N
	B. 0,98 N	D. 2,45 N	
25.	Seorang anak bermain ayunan d	dengan tali penggantung separ	njang 2,45 m.
	Apabila percepatan gravitas	i bumi 9,8 m/s ² , peri	iode ayunan
	sebesars		
	Α. π/2	C. 1,5 π	Ε. 3π
	Β. π	D. 2π	
26.	Sebuah beban bermassa 250 g	ram digantung dengan sebua	h pegas yang
	memiliki konstanta 100 N/m ke	mudian disimpangkan hingga	terjadi getaran
	selaras, maka besar periode getar	nnya adalahs	
	Α. 0,1 π	C. 0,5 π	Ξ. 5 π
	Β. 1 π	D. 10 π	
27.	Gambar berikut adalah grafik hu	bungan $T^2(s^{\dagger})$	
	T² terhadap m dari percobaan	getaran	•
	pegas. Dua pegas masing-	masing 0,04	
	identik dengan pegas percobaan o	disusun	
	seri. Tetapan susunan	pegas	
	adalah		
	A. $20 \pi^2 \text{ N/m}$ D. 40 I	N/m 0	400 m
	B. $40 \pi \text{ N/m}$ E. 20	N/m	
	C. $20 \pi \text{ N/m}$		
28.	Semua partikel melakukan geral	kan harmonis dengan panjang	lintasannya 8
	cm. Energi kinetik akan sama	dengan energi potensial keti	ka simpangan
	getarannya adalah		
	A. 2 cm	C. $3\sqrt{2}$ cm	E. 2 cm
	B. $2\sqrt{2}$ cm	D. 4 cm	

29. Sebuah benda melakukan ge	erak harmonik dengan per	samaan $y = 40 \sin(10\pi t)$
$+\pi/6$), y dalam cm dan	t dalam s. Kecepatan	partikel saat t =2 s
sebesar		
A. 2π m/s	C. $\pi \sqrt{3}$ m/s	E. $2\pi \sqrt{3}$ m/s
B. $2\pi \sqrt{2}$ m/s	D. 2 m/s	
30. Jika ada sebuah titik materi	i melakukan getaran harn	nonik sederhana dengan
simpangan terbesar adalah	A. Pada saat simpanga	nya $\frac{1}{2}$ A $\sqrt{2}$, maka fase
getaran titik tersebut terhada	p garis keseimbangan adal	lah
A. $\frac{1}{2}$	C. $\frac{1}{16}$	E. $\frac{1}{64}$
B. $\frac{1}{8}$	D. $\frac{1}{32}$	
31. Benda bermassa 20 gram	melakukan gerak harmo	onik sederhana dengan
periode 8 sekon. Kecepatan	benda setelah 1 sekon n	nelewati titik setimbang
adalah 4 cm/s. Energi mekan	nik getaran tersebut adalah	
A. $13 \times 10^{-6} \text{ J}$	C. $32 \times 10^{-6} \text{ J}$	$E.84 \times 10^{-6} J$
B. 26 x 10 ⁻⁶ J	D. $72 \times 10^{-6} \text{ J}$	
32. Dua buah osilator bergetar o	dengan fase sama pada t=	0. Frekuensi getaran 10
Hz dan 40 Hz. Setelah	5/4 sekon, kedua getara	an itu berselisih sudut
fase		
A. 0^0	C. 45^{0}	E. 180^{0}
B. 30^{0}	D. 90^{0}	

LAMPIRANC

C.1 Validasi Item Soal

C.2 Analisis Validasi Item Soal

Uji Validasi Galut

Validasi dan reliabilitas instrument penelitian

	No nomor Item																											
No																				nomo	r Item							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0
3	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
4	1	1	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	1	0	0
5	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1
6	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
7	1	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0
9	1	1	1	1	0	1	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	1	0	1
10	1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0
11	1	1	1	1	0	1	0	1	1	0	0	1	0	0	1	1	1	0	0	1	0	0	0	0	1	1	0	0
12	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1
13	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1
14	1	0	1	1	1	1	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	1	0	0
15	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
16	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	1
17	1	1	1	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	1	0	0
18	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0
19	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
20	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1
21	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
22	1	1	0	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
23	1	0	1	1	1	1	0	0	1	1	1	1	0	0	1	0	1	1	1	1	0	0	0	0	0	0	1	1
24	0	1	1	0	1	1	0	0	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	0	1	1
25	1	1	0	1	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
26	1	0	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
27	1	1	1	1	0	1	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1	0	1	0	1	0	0
28	1	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0
29	1	0	1	1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
30	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0
31	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0
32	1	1	1	1	1	1	0	0	1	1	0	1	0	0	1	1	1	1	1	0	0	0	0	1	1	0	0	1
33	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0
Σ	25	21	22	25	13	13	2	4	16	17	2	11	1	1	25	16	13	22	12	6	24	2	1	12	15	9	2	12
	0.7	0.6	0.6	0.7	0.3	0.3	0.0	0.1	0.4	0.2	0.0	0.3	0.0	0.0	0.3	0.4	0.3	0.12	0.3	0.1	0.09	0.0	0.0	0.3	0.4	0.2	0.0	0.3
p	58	36	67	58	94	94	61	21	85	12	61	33	30	30	03	85	94	1	64	82	1	61	30	64	55	73	61	64
	0.2 42	0.3 64	0.3	0.2	0.6	0.6 06	0.9 39	0.8 79	0.5 15	0.7	0.9	0.6 67	0.9 70	0.9 70	0.6 97	0.5	0.6 06	0.87 9	0.6 36	0.8	0.90 9	0.9	0.9 70	0.6	0.5	0.7	0.9 39	0.6
q	3.1	1.7	2.0	42 3.1	06 0.6	0.6	0.0	0.1	0.9	0.2	39 0.0	0.5	0.0	0.0	0.4	15 0.9	0.6	0.13	0.5	18 0.2	0.10	39 0.0	0.0	36 0.5	45 0.8	0.3	0.0	36 0.5
p/q	25	50	00	25	50	50	65	38	41	69	65	0.5	31	31	35	41	50	8	71	22	0.10	65	31	71	33	75	65	71

	0.1	0.2	0.2	0.1	0.2	0.2	0.0	0.1	0.2	0.1	0.0	0.2	0.0	0.0	0.2	0.2	0.2	0.10	0.2	0.1	0.08	0.0	0.0	0.2	0.2	0.1	0.0	0.2
p*q	84	31	22	84	39	39	57	07	50	67	57	22	29	29	11	50	39	7	31	49	3	57	29	31	48	98	57	31
•																												
Σ benar	448	387	403	448	250	273	32	66	308	147	55	223	14	13	197	314	273	102	233	102	34	44	19	237	302	170	55	220
	17.	18.	18.	17.	19.	21.	16.	16.	19.	8.6	27.	20.	14.	13.	7.8	19.	21.	4.63	19.	17.	1.41	22.	19.	19.	20.	18.	27.	18.
Mp	920	429	318	920	231	000	000	500	250	47	500	273	000	000	80	625	000	6	417	000	7	000	000	750	133	889	500	333
							-	-		-			-	-	-			-			-							
	1.1	1.6	1.5	1.1	2.4	4.2	0.7	0.2	2.4	8.1	10.	3.5	2.7	3.7	8.8	2.8	4.2	12.1	2.6	0.2	15.3	5.2	2.2	2.9	3.3	2.1	10.	1.5
Mp-Mt	62	71	61	62	73	42	58	58	92	11	742	15	58	58	78	67	42	21	59	42	41	42	42	92	76	31	742	76
							-	-		-			-	-	-			-			-							
	0.1	0.2	0.2	0.1	0.3	0.6	0.1	0.0	0.3	1.2	1.6	0.5	0.4	0.5	1.3	0.4	0.6	1.85	0.4	0.0	2.35	0.8	0.3	0.4	0.5	0.3	1.6	0.2
(Mp-Mt)/St	78	56	39	78	79	51	16	40	82	44	48	39	23	76	62	40	51	9	08	37	3	04	44	59	18	27	48	42
	•																											
	1.7	1.3	1.4	1.7	0.8	0.8	0.2	0.3	0.9	0.5	0.2	0.7	0.1	0.1	0.6	0.9	0.8	0.37	0.7	0.4	0.31	0.2	0.1	0.7	0.9	0.6	0.2	0.7
squart of p/q	68	23	14	68	06	06	54	71	70	19	54	07	77	77	59	70	06	1	56	71	6	54	77	56	13	12	54	56
							-	-		-			-	-	-			-										
Y h.:	0.3	0.3	0.3	0.3	0.3	0.5	0.0	0.0	0.3	0.6	0.4	0.3	0.0	0.1	0.8	0.4	0.5	0.69	0.3	0.0	0.74	0.2	0.0	0.3	0.4	0.2	0.4	0.1
γ_{pbi}	15	39	39	15	06	25	30	15	71	46	19	81	75	02	98	27	25	1	08	18	4	04	61	47	73	00	19	83
	Val	Val	Val	Val	Val	Val	Dro	Dro	Val	Dro	Val	Val	Dro	Dro	Dro	Val	Val	Dro	Val	Dro	Dro	Dro	Dro	Val	Val	Dro	Val	Dro
Status	id	id	id	id	id	id	р	р	id	р	id	id	р	р	р	id	id	р	id	р	р	р	р	id	id	р	id	р

No							-	nomor ite	m							
	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	1	0	0	0	1	1	0	1	0	0	0
3	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
4	1	1	0	1	1	0	1	1	0	1	0	1	0	0	0	0
5	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1
6	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0
8	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	0
9	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0
10	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0
11	1	1	0	1	1	0	1	1	0	0	0	1	0	0	0	0
12	1	0	0	0	0	0	0	0	1	1	1	0	1	0	0	1
13	0	1	0	1	0	0	0	1	1	1	0	1	0	0	0	0
14	1	1	0	1	0	0	1	1	0	1	0	1	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
16	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
17	1	1	0	1	0	0	1	1	0	1	0	1	0	0	0	0
18	0	0	1	0	0	0	1	1	0	0	0	0	0	1	0	1
19	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	1	1	0	0	0	1	1	0	0	1	0	1
22	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1

			ı .	ı .	ı .					i -	i a		ı .			
23	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0
24	0	1	0	1	0	1	0	1	0	1	1	1	0	0	0	0
25	0	0	0	0	1	1	0	1	0	0	1	0	0	0	1	0
26	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0
27	1	1	1	1	1	0	0	1	0	1	1	0	1	1	0	0
28	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0
29	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0
30	1	1	0	1	1	0	1	1	0	0	0	0	1	0	0	0
31	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0
32	1	0	0	0	1	0	1	1	0	1	1	1	0	0	0	0
33	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0
Σ	11	10	6	10	11	4	9	21	3	11	14	12	9	6	1	6
р	0.333	0.303	0.182	0.303	0.333	0.121	0.273	0.636	0.091	0.333	0.424	0.364	0.273	0.182	0.030	0.182
q	0.667	0.697	0.818	0.697	0.667	0.879	0.727	0.364	0.909	0.667	0.576	0.636	0.727	0.818	0.970	0.818
p/q	0.500	0.435	0.222	0.435	0.500	0.138	0.375	1.750	0.100	0.500	0.737	0.571	0.375	0.222	0.031	0.222
p*q	0.222	0.211	0.149	0.211	0.222	0.107	0.198	0.231	0.083	0.222	0.244	0.231	0.198	0.149	0.029	0.149
Σ benar	233	208	91	208	215	81	184	394	42	226	270	243	154	84	21	89
Мр	21.182	20.80	15.16 7	20.80 0	19.54 5	20.25 0	20.44 4	18.76 2	14.00 0	20.54 5	19.28 6	20.25 0	17.11 1	14.00 0	21.00 0	14.83 3
Mp-Mt	4.424	4.042	-1.591	4.042	2.788	3.492	3.687	2.004	-2.758	3.788	2.528	3.492	0.354	-2.758	4.242	-1.924
(Mp-Mt)/St	0.679	0.620	-0.244	0.620	0.428	0.536	0.566	0.307	-0.423	0.581	0.388	0.536	0.054	-0.423	0.651	-0.295
squart of p/c	0.707	0.659	0.471	0.659	0.707	0.371	0.612	1.323	0.316	0.707	0.858	0.756	0.612	0.471	0.177	0.471
${\gamma}_{pbi}$	0.480	0.409	-0.115	0.409	0.302	0.199	0.346	0.407	-0.134	0.411	0.333	0.405	0.033	-0.199	0.115	-0.139
Status	Valid	Valid	Drop	Valid	Valid	Drop	Valid	Valid	Drop	Valid	Valid	Valid	Drop	Drop	Drop	Drop

No		i	nomo	r iten	n					r	nomo	r iten	n						Noi	mor i	tem			ΣΧ
	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	2.4
1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	9
2	0	0	1	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	19
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	11
4	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19
5	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	12
6	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	1	0	14
7	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0	0	12
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	15
9	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	20
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
11	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	25
12	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	17
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
14	0	0	1	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	24
15	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	8
16	1	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	17
17	0	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21
18	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	15
19	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	6
20	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
22	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	0	17
23	0	1	0	1	1	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	25
24	0	1	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	30
25	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	21
26	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	15
27	0	0	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	29
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	12
29	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	14
30	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	22
31	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	15
32	0	1	0	1	1	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	32
33	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	10
Σ	2	5	9	11	10	9	4	5	9	3	3	5	4	10	5	2	4	4	4	7	5	1	8	553
р	0.06	0.15	0.27	0.33	0.30	0.27	0.12	0.15	0.27	0.09	0.09	0.15	0.12	0.30	0.15	0.06	0.12	0.12	0.12	0.21	0.15	0.03	0.24	16.75

	1	2	3	3	3	3	1	2	3	1	1	2	1	3	2	1	1	1	1	2	2	0	2	8
a	0.93	0.84	0.72	0.66	0.69	0.72 7	0.87	0.84 8	0.72	0.90	0.90	0.84	0.87	0.69	0.84	0.93	0.87 9	0.87	0.87	0.78	0.84	0.97	0.75 8	- 15.75 8
p/q	0.06 5	0.17 9	0.37 5	0.50 0	0.43 5	0.37 5	0.13 8	0.17 9	0.37 5	0.10 0	0.10	0.17 9	0.13 8	0.43 5	0.17 9	0.06 5	0.13 8	0.13 8	0.13 8	0.26 9	0.17 9	0.03	0.32	-1.063
p*q	0.05 7	0.12 9	0.19 8	0.22 2	0.21 1	0.19 8	0.10 7	0.12 9	0.19 8	0.08 3	0.08 3	0.12 9	0.10 7	0.21 1	0.12 9	0.05 7	0.10 7	0.10 7	0.10 7	0.16 7	0.12 9	0.02 9	0.18 4	Σpq
Σ benar	32	114	185	231	200	183	64	96	181	58	37	126	74	198	82	45	61	98	79	110	75	14	172	10627
Мр	16.0 00	22.8 00	20.5 56	21.0 00	20.0 00	20.3 33	16.0 00	19.2 00	20.1 11	19.3 33	12.3 33	25.2 00	18.5 00	19.8 00	16.4 00	22.5 00	15.2 50	24.5 00	19.7 50	15.7 14	15.0 00	14.0 00	21.5 00	1218. 324
Mp-Mt	0.75 8	6.04 2	3.79 8	4.24 2	3.24 2	3.57 6	0.75 8	2.44 2	3.35 4	2.57 6	4.42 4	8.44 2	1.74 2	3.04	0.35 8	5.74 2	1.50 8	7.74 2	2.99	1.04 3	1.75 8	2.75 8	4.74 2	
(Mp-Mt)/St	0.11 6	0.92 7	0.58 3	0.65 1	0.49 7	0.54 8	0.11 6	0.37 5	0.51 4	0.39 5	0.67 9	1.29 5	0.26 7	0.46 7	0.05 5	0.88 1	0.23 1	1.18 8	0.45 9	0.16 0	0.27 0	0.42 3	0.72 7	
squart of p/q	0.25 4	0.42	0.61	0.70 7	0.65 9	0.61	0.37	0.42	0.61 2	0.31 6	0.31 6	0.42	0.37 1	0.65 9	0.42 3	0.25 4	0.37 1	0.37 1	0.37	0.51 9	0.42	0.17 7	0.56 6	
γ_{pbi}	0.03 0	0.39	0.35 7	0.46 0	0.32 8	0.33 6	0.04 3	0.15 8	0.31 5	0.12 5	0.21 5	0.54 7	0.09	0.30 8	0.02 3	0.22 4	0.08 6	0.44 1	0.17 0	0.08 3	- 0.11 4	0.07 5	0.41 2	
Status	Dro p	Dro p	Vali d	Vali d	Dro p	Vali d	Dro P	Dro p	Vali d	Dro p	Dro p	Vali d	Dro p	Vali d	Dro p	Dro p	Dro p	Vali d	Dro p	Dro p	Dro p	Dro p	Vali d	

ANALISIS INSTRUMEN PENELITIAN

1. ANALISIS VALIDITAS ITEM

Dalam pengujian validitas item tes hasil belajar fisika (aspek kognitif) digunakan persamaan berikut:

$$\gamma_{pbi} = \frac{Mp - Mt}{St} \sqrt{\frac{p}{q}}$$

Keterangan:

 γ_{pbi} = koefisien korelasi biseral

 M_p = rerata skor dari subjek yang menjawab betul bagi item yang

dicari validitasnya.

 M_t = Rerata skor total

 S_t = standar deviasi dari skor total

p = proporsi peserta didik yang menjawab benar

 $p = \frac{\textit{Banyaknya peserta didik yang menjawab benar}}{\textit{Jumla h seluru h peserta didik}}$

q = proporsi peserta didik yang menjawab salah (q = 1 - p)

Untuk validasi soal no 1 dari 67 soal yang telah diberikan kepada 33 peserta didik

a. Menentukan proporsi menjawab benar (p) dengan persamaan:

$$p = \frac{\sum X}{N} = \frac{25}{33} = 0.758$$

b. Menentukan nilai q yang merupakan selisih bilangan 1 dengan p yaitu:

$$q = 1 - p$$

 $q = 1 - 0.758 = 0.242$

c. Menentukan rerata skor total dengan persamaan:

 $M_t = \frac{\sum x}{n} = \frac{553}{33} = 16,76$ Menentukan rerata skor peserta tes yang menjawab

benar:

$$M_P=rac{jumla\;h\;skor\;peserta\;didik\;yang\;menjawab\;benar}{Jum\;lah\;peserta\;didik\;yang\;menjawab\;benar}$$
 $=rac{448}{25}=17,92$

d. Menentukan standar deviasi dengan persamaan:

$$S_t = \sqrt{\frac{\sum X_t^2 - \frac{(X_t)^2}{n}}{n - 1}} = \sqrt{\frac{10627 - \frac{(553)^2}{33}}{33 - 1}}$$

$$S_t = \sqrt{\frac{10627 - 9267}{32}} = \sqrt{\frac{1361}{32}}$$

$$S_t = 6.52$$

e. Menentukan validitas dengan persamaan:

$$r_{pbi} = \frac{M_p - M_t}{S_t} x \sqrt{\frac{p}{q}}$$

$$= \frac{17,92 - 16,76}{6,52} \times \sqrt{\frac{0,758}{0,242}}$$

$$= 0,178 \times 1,770 = 0,315$$

 $r_{tabel}=0.34$, oleh karena itu item nomor 1 dinyatakan tidak valid sebab $r_{hitung} < r_{tabel}=0.32 < 0.34$

Untuk validasi soal no 7 dari 67 soal yang telah diberikan kepada 33 peserta didik

a. Menentukan proporsi menjawab benar (p) dengan persamaan:

$$p = \frac{\sum X}{N} = \frac{2}{33} = 0.061$$

b. Menentukan nilai q yang merupakan selisih bilangan 1 dengan p yaitu:

$$q = 1 - p$$

 $q = 1 - 0,061 = 0,939$

c. Menentukan rerata skor total dengan persamaan:

$$M_{t} = \frac{\sum x}{n} = \frac{553}{33} = 16,758$$

d. Menentukan rerata skor peserta tes yang menjawab benar:

$$M_P=rac{ ext{jumla h skor peserta didik yang menjawab benar}}{ ext{Jumla h peserta didik yang menjawab benar}}$$
 $=rac{32}{2}=16,000$

a. Menentukan standar deviasi dengan persamaan:

$$S_t = \sqrt{\frac{\sum X_t^2 - \frac{(X_t)^2}{n}}{n - 1}} = \sqrt{\frac{10627 - \frac{(553)^2}{33}}{33 - 1}}$$
$$S_t = \sqrt{\frac{10627 - 9267}{32}} = \sqrt{\frac{1361}{32}}$$

$$S_t = 6.52$$

b. Menentukan validitas dengan persamaan:

$$r_{pbi} = \frac{M_p - M_t}{S_t} x \sqrt{\frac{p}{q}}$$

$$= \frac{16,000 - 16,758}{6,52} \times \sqrt{\frac{0,061}{0,939}}$$

$$= -0,116 \times 0,255 = -0,03$$

 $r_{tabel} = 0.34$, oleh karena itu item nomor 7 dinyatakan tidak valid sebab $r_{hitung} < r_{tabel} = -0.03 < 0.34$

2. REABILITAS

Uji reliabilitas tes instrumen penelitian dilakukan dengan menggunakan rumus Kuder – Richardson (KR-20) sebagai berikut:

$$n = 33$$

$$st = 2,20$$

$$st^2 = 42.51$$

$$\sum pq = 10,470$$

$$r_{11} = \left(\frac{n}{n-1}\right)\left(\frac{s^2 - \sum pq}{s^2}\right)$$

Keterangan:

r₁₁ :reabilitas tes secara keseluruhan

p : proporsi subjek yang menjawab item dengan benar q : proporsi subjek yang menjawab item dengan salah

 \sum pq : jumlah hasil perkalian antara p dan q

n : banyaknya item s : standar deviasi tes

$$r_{11} = \left(\frac{n}{n-1}\right) \left(\frac{s^2 - \sum pq}{s^2}\right)$$

$$= \left(\frac{33}{33 - 1}\right) \left(\frac{42,51 - 10,470}{42,51}\right)$$

$$= \left(\frac{33}{32}\right) \left(\frac{32,04}{42,51}\right)$$

$$= (1,031) \times (0,754)$$

$$= 0.78$$

Karena $r_{11hitung}$ > r_{tabel} , maka tes instrumen dinyatakan reliabel. Jadi realibitas tes hasil belajar fisika hasil uji coba adalah 0,78.

LAMPIRAND

1. Analisis Deskriptif

D.1 Hasil Pre Tes

D.2 Hasil Poss Tes

2. Analisis Inferensial

D.3 Uji N-Gain

A. Analisis Deskriptif

Skor dan Ketuntasan *Pretest* Hasil Belajar Peserta Didik Kelas XI MIA.₃ SMA Negeri 5 Jeneponto

LAMPIRAN D.1 Skor *Pretest* Hasil Belajar Peserta Didik

No	Nama	Skor
1	Abd. Rahmat	7
2	Asmiranda	8
3	Deni Agung	5
4	Dewi Sartika	16
5	Dirgahayu	6
6	Elvira Nurul Fitra	9
7	Fitriani Putri	11
8	Hendira Saputra	10
9	Hendriansyah	5
10	Ilham Efendi	12
11	Irham Efendi	5
12	Ishak	7
13	Juarni	7
14	Kurniawan	13
15	Lisda Lestari Putri	8
16	M. Nurqadri Arief	16
17	Mirnawati Dewi	7
18	Muh. Isra	5
19	Muh. Kusbiardi. J	5
20	Muh. Rauf. B	10
21	Mutmainnah	10
22	Nurkadri	10
23	Nurhismi Handayani	8
24	Nurlaela	11
25	Pratiwi Eka Puspitasari	8
26	Prawina Asti Wandani	5
27	Putri Amalia	12
28	Rahma	10
29	Rendi Bahtiar	6
30	Riswan	12
31	Salfira	8
32	Satrianto Ali	11
33	Sri Ayu Nengsih	12
34	Sri Darmayanti	10
35	Sri Handayani	11
36	Suarni	6
37	Wahyu Okta Mansyur	6
38	Winda	9
39	Yanwar Wibowo	6
40	Yayu	6

41	Musfiratul Jannah	7
	Skor tertinggi	16
	Skor terendah	5
	Skor rata-rata	8,69
	Standar deviasi	2,83
	Skor Ideal	32

Untuk membuat tabel distribusi frekuensi dibutuhkan beberapa nilai, yaitu:

a. Skor maksimum
$$(X_{max})$$
 = 16
b. Skor minimum (X_{min}) = 5
c. Rentang (R) = Skor maksimum – skor minimum = 16 – 5
= 11
d. Banyaknya Kelas (K) = 1 + 3,3 log n = 1 + 3,3 log 41 = 1 + 3,3 x 1,61 = 1 + 5,31 = 6,31, dibulatkan menjadi 6
e. Panjang kelas (P) = $\frac{R}{k} = \frac{11}{6}$ = 1,83dibulatkan menjadi 2

LAMPIRAN D.2 Distribusi Frekuensi Skor Hasil Belajar Peserta Didik pada *Pretest*

Interval Kelas	$\mathbf{f_i}$	X_{i}	X_i^2	f _i . X _i	$f_i \cdot X_i^2$
5 – 6	12	5,5	30.25	66	363
7 – 8	10	7,5	56.25	75	562.5
9 – 10	8	9,5	90.25	76	722
11 – 12	8	11,5	132.25	92	1058
13 – 14	1	13,5	182.25	13.5	182.25
15 – 16	2	15,5	240.25	31	480.5
Jumlah	41			353.5	3368.25

rata-rata (\bar{X})

$$\bar{X} = \frac{\sum f_i \cdot x_i}{f_i} = \frac{353.5}{41} = 8,62$$

a. Standar Deviasi (SD)

Standar Deviasi (SD)
$$SD = \sqrt{\frac{n \sum f_i \cdot x_i^2 - \sum (f_i \cdot x_i)^2}{n \cdot (n-1)}}$$

$$= \sqrt{\frac{41 \cdot x3368.25 - (353.5)^2}{41 \cdot (41-1)}}$$

$$= \sqrt{\frac{138098,25 - 124962,25}{1640}}$$

$$= \sqrt{\frac{13136}{1640}}$$
$$= 2.83$$

LAMPIRAN D.3 Skor *Poss Test* Hasil Belajar Peserta Didik

No	Nama	Skor
1	Abd. Rahmat	12
2	Asmiranda	15
3	Deni Agung	11
4	Dewi Sartika	19
5	Dirgahayu	16
6	Elvira Nurul Fitra	23
7	Fitriani Putri	16
8	Hendira Saputra	14
9	Hendriansyah	11
10	Ilham Efendi	26
11	Irham Efendi	13
12	Ishak	15
13	Juarni	25
14	Kurniawan	24
15	Lisda Lestari Putri	26
16	M. Nurqadri Arief	28
17	Mirnawati Dewi	19
18	Muh. Isra	13
19	Muh. Kusbiardi. J	11
20	Muh. Rauf. B	13
21	Mutmainnah	20
22	Nurkadri	26
23	Nurhismi Handayani	15
24	Nurlaela	28
25	Pratiwi Eka Puspitasari	19
26	Prawina Asti Wandani	12
27	Putri Amalia	24
28	Rahma	21
29	Rendi Bahtiar	11
30	Riswan	27
31	Salfira	20
32	Satrianto Ali	26
33	Sri Ayu Nengsih	28
34	Sri Darmayanti	15
35	Sri Handayani	27
36	Suarni	19
37	Wahyu Okta Mansyur	11
38	Winda	21
39	Yanwar Wibowo	24
40	Yayu	14
41	Musfiratul Jannah	24

Skor tertinggi	28
Skor terendah	11
Skor rata-rata	19,07
Standar deviasi	6,42
Skor Ideal	32

Untuk membuat tabel distribusi frekuensi dibutuhkan beberapa nilai, yaitu:

a. Skor maksimum
$$(X_{max}) = 28$$

b. Skor minimum
$$(X_{min}) = 20$$

d. Banyaknya Kelas (K) =
$$1 + 3.3 \log n$$

= $1 + 3.3 \log 41$

$$= 1 + 3.3 \times 1.61$$

= 1 + 5.31

e. Panjang kelas (P)
$$= \frac{R}{k} = \frac{17}{6}$$

LAMPIRAN D.4 Distribusi Frekuensi Skor Hasil Belajar Peserta Didik pada Poss Tes

Interval Kelas	f_i	Xi	X_i^2	f_i . X_i	$f_i \cdot X_i^2$
11 – 13	10	12	144	120	1440
14 – 16	8	15	225	120	1800
17 – 19	4	18	324	72	1296
20 – 22	4	21	441	84	1764
23 – 25	6	24	576	144	3456
26 – 28	8	27	729	216	5832
Jumlah	41			756	15588

a. rata-rata
$$(\bar{X})$$

a. rata-rata
$$(\bar{X})$$

 $\bar{X} = \frac{\sum f_i \cdot x_i}{f_i} = \frac{756}{41} = 18,44$

b. Standar Deviasi (SD)

$$SD = \sqrt{\frac{n \sum f_i \cdot x_i^2 - \sum (f_i \cdot x_i)^2}{n \cdot (n-1)}}$$

$$= \sqrt{\frac{41 \cdot x \cdot 15588 - (756)^2}{41 \cdot (41-1)}}$$

$$= \sqrt{\frac{639108 - 571536}{1640}}$$

$$= \sqrt{\frac{67572}{1640}}$$

$$= 6.42$$

LAMPIRAN D.5 Rekapitulasi Hasil Belajar Peserta Didik *Pre tes dan Poss tes*

No	Nama	Pre	Tes	Pos	s Tes
		Skor	Nilai	Skor	Nilai
1	Abd. Rahmat	7	12	12	38
2	Asmiranda	8	25	15	47
3	Deni Agung	5	9	11	34
4	Dewi Sartika	16	44	19	59
5	Dirgahayu	6	18	16	50
6	Elvira Nurul Fitra	9	28	23	72
7	Fitriani Putri	11	34	16	50
8	Hendira Saputra	10	31	14	44
9	Hendriansyah	5	18	11	34
10	Ilham Efendi	12	38	26	81
11	Irham Efendi	5	16	13	41
12	Ishak	7	22	15	47
13	Juarni	7	22	25	78
14	Kurniawan	13	44	24	75
15	Lisda Lestari Putri	8	25	26	81
16	M. Nurqadri Arief	16	44	28	88
17	Mirnawati Dewi	7	22	19	59
18	Muh. Isra	5	9	13	68
19	Muh. Kusbiardi. J	5	9	11	54
20	Muh. Rauf. B	10	31	13	41
21	Mutmainnah	10	31	20	62
22	Nurkadri	10	31	26	81
23	Nurhismi Handayani	8	25	15	47
24	Nurlaela	11	28	28	88
25	Pratiwi Eka Puspitasari	8	25	19	59
26	Prawina Asti Wandani	5	12	12	38
27	Putri Amalia	12	38	24	75
28	Rahma	10	31	21	66
29	Rendi Bahtiar	6	18	11	34
30	Riswan	12	38	27	84
31	Salfira	8	25	20	62
32	Satrianto Ali	11	18	26	81
33	Sri Ayu Nengsih	12	38	28	88
34	Sri Darmayanti	10	31	15	47
35	Sri Handayani	11	34	27	84
36	Suarni	6	18	19	59
37	Wahyu Okta Mansyur	6	18	11	34
38	Winda	9	28	21	66
39	Yanwar Wibowo	6	18	24	75
40	Yayu	6	18	14	44
41	Musfiratul Jannah	7	22	24	75

LAMPIRAN D.6 Ketuntasan Hasil Belajar Peserta Didik Kelas XI MIA.₃ SMA Nagari 5 Japanonto

SM	A Negeri 5 Jeneponto					
No	Nama	Pre	Tes	Pos	s Tes	Keterangan
		Skor	Nilai	Skor	Nilai	1
1	Abd. Rahmat	7	12	12	38	Tidak Tuntas
2	Asmiranda	8	25	15	47	Tidak Tuntas
3	Deni Agung	5	9	11	34	Tidak Tuntas
4	Dewi Sartika	16	44	19	59	Tidak Tuntas
5	Dirgahayu	6	18	16	50	Tidak Tuntas
6	Elvira Nurul Fitra	9	28	23	72	Tidak Tuntas
7	Fitriani Putri	11	34	16	50	Tidak Tuntas
8	Hendira Saputra	10	31	14	44	Tidak Tuntas
9	Hendriansyah	5	18	11	34	Tidak Tuntas
10	Ilham Efendi	12	38	26	81	Tuntas
11	Irham Efendi	5	16	13	41	Tidak Tuntas
12	Ishak	7	22	15	47	Tidak Tuntas
13	Juarni	7	22	25	78	Tuntas
14	Kurniawan	13	44	24	75	Tuntas
15	Lisda Lestari Putri	8	25	26	81	Tuntas
16	M. Nurqadri Arief	16	44	28	91	Tuntas
17	Mirnawati Dewi	7	22	19	38	Tidak Tuntas
18	Muh. Isra	5	9	13	68	Tidak Tuntas
19	Muh. Kusbiardi. J	5	9	11	54	Tidak Tuntas
20	Muh. Rauf. B	10	31	13	41	Tidak Tuntas
21	Mutmainnah	10	31	20	62	Tidak Tuntas
22	Nurkadri	10	31	26	81	Tuntas
23	Nurhismi Handayani	8	25	15	47	Tidak Tuntas
24	Nurlaela	11	28	28	88	Tuntas
25	Pratiwi Eka Puspitasari	8	25	19	59	Tidak Tuntas
26	Prawina Asti Wandani	5	12	12	38	Tidak Tuntas
27	Putri Amalia	12	38	24	75	Tuntas
28	Rahma	10	31	21	66	Tidak Tuntas
29	Rendi Bahtiar	6	18	11	34	Tidak Tuntas
30	Riswan	12	38	27	84	Tuntas
31	Salfira	8	25	20	62	Tidak Tuntas
32	Satrianto Ali	11	18	26	81	Tuntas
33	Sri Ayu Nengsih	12	38	28	88	Tuntas
34	Sri Darmayanti	10	31	15	47	Tidak Tuntas
35	Sri Handayani	11	34	27	84	Tuntas
36	Suarni	6	18	19	41	Tidak Tuntas
37	Wahyu Okta Mansyur	6	18	11	31	Tidak Tuntas
38	Winda	9	28	21	66	Tidak Tuntas
39	Yanwar Wibowo	6	18	24	75	Tuntas
40	Yayu	6	18	14	44	Tidak Tuntas
41	Musfiratul Jannah	7	22	24	75	Tuntas

LAMPIRAN D.7 Rekapitulasi Skor Hasil Belajar Peserta Didik

No	Responden	Pre	Persentase	Kategori	Poss	Persentase	Kategori
		tes	(%)		test	(%)	
1	Abd. Rahmat	7	17.07	Sangat rendah	12	29,27	Rendah
2	Asmiranda	8	19.51	Sangat rendah	15	36,59	Rendah
3	Deni Agung	5	12.20	Sangat rendah	11	26,83	Rendah
4	Dewi Sartika	16	39.02	Rendah	19	46,34	Sedang
5	Dirgahayu	6	14.63	Sangat rendah	16	39,02	Rendah
6	Elvira Nurul Fitra	9	21.95	Rendah	23	56,10	Sedang
7	Fitriani Putri	11	26.83	Rendah	16	39,02	Rendah
8	Hendira Saputra	10	24.39	Rendah	14	34,15	Rendah
9	Hendriansyah	5	12.20	Sangat rendah	11	26,83	Rendah
10	Ilham Efendi	12	29.27	Rendah	26	63,41	Tinggi
11	Irham Efendi	5	12.20	Sangat rendah	13	31,71	Rendah
12	Ishak	7	17.07	Sangat rendah	15	36,59	Rendah
13	Juarni	7	17.07	Sangat rendah	25	60,98	Tinggi
14	Kurniawan	13	31.71	Rendah	24	58,54	Sedang
15	Lisda Lestari Putri	8	19.51	Sangat rendah	26	63,41	Tinggi
16	M. Nurqadri Arief	16	39.02	Rendah	29	70,73	Tinggi
17	Mirnawati Dewi	7	17.07	Sangat rendah	12	29,27	Rendah
18	Muh. Isra	5	12.20	Sangat rendah	13	31,71	Rendah
19	Muh. Kusbiardi. J	5	12.20	Sangat rendah	11	26,83	Rendah
20	Muh. Rauf. B	10	24.39	Rendah	13	31,71	Rendah
21	Mutmainnah	10	24.39	Rendah	20	48,78	Sedang
22	Nurkadri	10	24.39	Rendah	26	63,41	Tinggi
23	Nurhismi Handayani	8	19.51	Sangat rendah	15	36,59	Rendah
24	Nurlaela	11	26.83	Rendah	28	68,29	Tinggi

25	Pratiwi Eka Puspitasari	8	19.51	Sangat rendah	19	46,34	Sedang
26	Prawina Asti Wandani	5	12.20	Sangat rendah	13	31,71	Rendah
27	Putri Amalia	12	29.27	Rendah	24	58,54	Sedang
28	Rahma	10	24.39	Rendah	21	51,22	Sedang
29	Rendi Bahtiar	6	14.63	Sangat rendah	11	26,83	Rendah
30	Riswan	12	29.27	Rendah	27	65,85	Tinggi
31	Salfira	8	19.51	Sangat rendah	20	48,78	Sedang
32	Satrianto Ali	11	26.83	Rendah	26	63,41	Tinggi
33	Sri Ayu Nengsih	12	29.27	Rendah	28	68,29	Tinggi
34	Sri Darmayanti	10	24.39	Rendah	15	36,59	Rendah
35	Sri Handayani	11	26.83	Rendah	27	65,85	Sedang
36	Suarni	6	14.63	Sangat rendah	13	31,71	Rendah
37	Wahyu Okta Mansyur	6	14.63	Sangat rendah	11	26,83	Rendah
38	Winda	9	21.95	Rendah	21	51,22	Sedang
39	Yanwar Wibowo	6	14.63	Sangat rendah	24	58,54	Sedang
40	Yayu	6	14.63	Sangat rendah	14	34,15	Rendah
41	Musfiratul Jannah	7	17.07	Sangat rendah	24	58,54	Sedang

LAMPIRAN D.8 Analisis Inferensial (N-Gain)

No	Nama	Nilai		Coin	N. Coin	I Z - 4
		Pre Tes	Poss test	Gain	N-Gain	Kategori
1	Abd. Rahmat	7	12	5	0,20	Rendah
2	Asmiranda	8	15	7	0,29	Rendah
3	Deni Agung	5	11	6	0,22	Rendah
4	Dewi Sartika	16	19	3	0,19	Rendah
5	Dirgahayu	6	16	10	0,38	Sedang
6	Elvira Nurul Fitra	9	23	14	0,61	Sedang
7	Fitriani Putri	11	16	5	0,24	Rendah
8	Hendira Saputra	10	14	4	0,18	Rendah
9	Hendriansyah	5	11	6	0,22	Rendah
10	Ilham Efendi	12	26	14	0,70	Tinggi
11	Irham Efendi	5	13	8	0,30	Sedang
12	Ishak	7	15	8	0,32	Sedang
13	Juarni	7	25	18	0,72	Tinggi
14	Kurniawan	13	24	11	0,58	Sedang
15	Lisda Lestari Putri	8	26	18	0,75	Tinggi
16	M. Nurqadri Arief	16	28	12	0,75	Tinggi
17	Mirnawati Dewi	7	19	12	0,48	Sedang
18	Muh. Isra	5	13	8	0,30	Rendah
19	Muh. Kusbiardi. J	5	11	6	0,22	Rendah
20	Muh. Rauf. B	10	13	3	0,14	Rendah
21	Mutmainnah	10	20	10	0,45	Sedang
22	Nurkadri	10	26	16	0,73	Tinggi
23	Nurhismi Handayani	8	15	7	0,29	Rendah
24	Nurlaela	11	28	17	0,81	Tinggi
25	Pratiwi Eka Puspitasari	8	19	11	0,46	Sedang
26	Prawina Asti Wandani	5	12	7	0,26	Rendah
27	Putri Amalia	12	24	12	0,60	Sedang
28	Rahma	10	21	11	0,50	Sedang
29	Rendi Bahtiar	6	11	5	0,19	Rendah

30	Riswan	12	27	15	0,75	Tinggi
31	Salfira	8	20	12	0,50	Sedang
32	Satrianto Ali	11	26	15	0,71	Tinggi
33	Sri Ayu Nengsih	12	28	16	0,80	Tinggi
34	Sri Darmayanti	10	15	5	0,23	Rendah
35	Sri Handayani	11	27	16	0,76	Tinggi
36	Suarni	6	19	13	0,50	Sedang
37	Wahyu Okta Mansyur	6	11	5	0,19	Rendah
38	Winda	9	21	12	0,52	Sedang
39	Yanwar Wibowo	6	24	18	0,69	Sedang
40	Yayu	6	14	8	0,31	Sedang
41	Musfiratul Jannah	7	24	17	0,68	Sedang
	Skor tertinggi	16	28			
	Skor terendah	5	11			
	Skor rata-rata	8,69	19,07		0,45	Sedang
	Standar deviasi	2,83	6,42			
	Skor Ideal	32	32			

$$N - Gain = \frac{S_{post - test} - S_{pre - test}}{skor (maks) - S_{pre - test}}$$
$$= \frac{19,07 - 8,69}{32 - 8,69}$$

E.1 Daftar Hadir Peserta Didik

E.2 Documentasi

E.3 Slide Media Pembelajaran

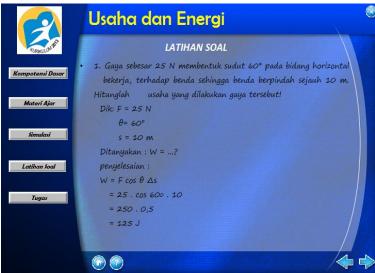
DAFTAR HADIR KELAS XI MIA.3 SEMESTER GANJIL SMA NEGERI 5 JENEPONTO TAHUN AJARAN 2017/2018

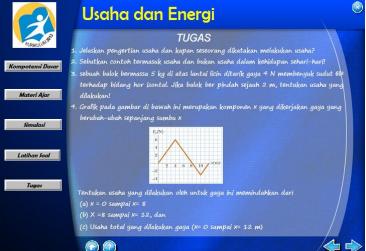
No	Nama Peserta Didik	L/P	19/10/017	21/10/017	26/10/017	28/10/017	02/11/017	04/11/017	09/11/017	11/11/017	16/11/017	18/11/017
1	Abd. Rahmat	L	V			A	V	V	√	V	V	
2	Asmiranda	P	1	√		√	A	1	1	V	V	1
3	Deni Agung	L	V	√		A	V	V	1	V	V	
4	Dewi Sartika	P	1	√		√		1	1	A	V	1
5	Dirgahayu	L	√	√		A	V	1		V	V	1
6	Elvira Nurul Fitra	P	1	√			V	1		V	V	$\sqrt{}$
7	Fitriani Putri	P	1	√	√		V	1	A	V	S	
8	Hendira Saputra	L	1	√			V	1	A	V	V	$\sqrt{}$
9	Hendriansyah	L	√	A		A	A	1		V	V	
10	Ilham Efendi	L				A		V		V	V	$\sqrt{}$
11	Irham Efendi	L	V	√	√	√	A	V	1	V	V	V
12	Ishak	L	1	√		A	A	1	1	V	V	1
13	Juarni	P						1		V	V	1
14	Kurniawan	L								V	V	$\sqrt{}$
15	Lisda Lestari Putri	P	√	√	√	√	V	V	√	V	V	
16	M. Nurqadri Arief	L								V	V	$\sqrt{}$
17	Mirnawati Dewi	P						V		V	V	
18	Muh. Isra	L	1	√		A		1	1	V	V	1
19	Muh. Kusbiardi. J	L	√	√			V	1		A	V	1
20	Muh. Rauf. B	L	1	A			A	1	A	V	V	1
21	Mutmainnah	P	V	V		1	1	V		A	V	1
22	Nurkadri	P	1	V	√	√	1	1	√	V	1	1
23	Nurhismi Handayani	P	V	V	√	V	1	V	√	V	V	V
24	Nurlaela	P	V	V		√	1	V		V	V	V
25	Pratiwi Eka Puspitasari	P	V	A	√	√	1	V	√	V	V	V
26	Prawina Asti Wandani	P	V	V	√	A	V	V	√	V	V	V

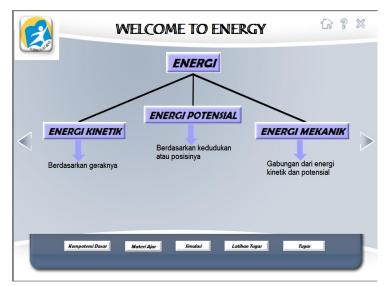
27	Putri Amalia	P	V	V	V	V	V	V	V	V	V	$\sqrt{}$
28	Rahma	P	V	V	V	i	A	V	V	$\sqrt{}$	V	V
29	Rendi Bahtiar	L	V	S	V	V	V	1	V	V	V	$\sqrt{}$
30	Riswan	L		$\sqrt{}$	1	V		V	V	1	V	1
31	Salfira	P	1	V	V	A	1	1	V	V	1	1
32	Satrianto Ali	L	1	V	V	V	1	1	V	V	V	1
33	Sri Ayu Nengsih	P	1	1	V	V	1	1	1	V	1	1
34	Sri Darmayanti	P		$\sqrt{}$	1	V		V	V	1	V	1
35	Sri Handayani	P	1	1	V	V	1	1	V	V	1	1
36	Suarni	P	V	1	V	A	V	1	V	V	V	1
37	Wahyu Okta Mansyur	L	1	1	V	V	1	1	V	1	V	1
38	Winda	P	V	1	V	V	V	1	V	V	V	1
39	Yanwar Wibowo	L	V	V	V	A	A	√	1	A	V	1
40	Yayu	P		$\sqrt{}$	1	V		V	V	1	V	1
41	Musfiratul Jannah	P	V	V	V	V	V	V	V		1	1

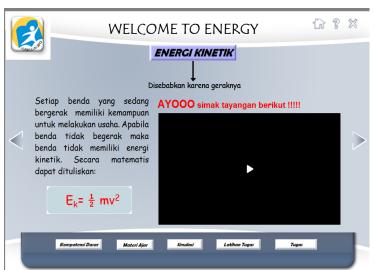
DOCUMENTASI

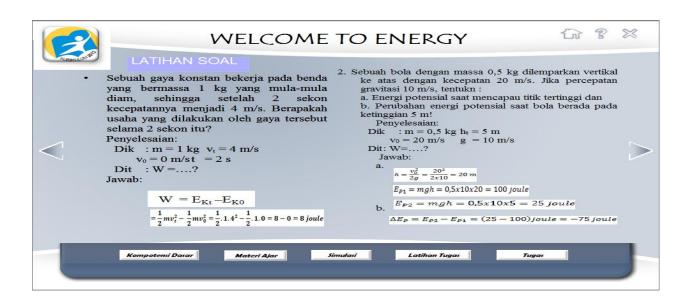
1. Kegiatan Belajar Mengajar


2. Pelaksanaan Tes









I AMPIRAL F

PERSURATAN

Jalan Sultan Alauddin No. 259 Makassar

Telp : 0411-860837/860132 (Fax)

Email: fkip@unismuh.ac.id
Web: www.fkip.unismuh.ac.id

بسم الله الرحمن الرحيم PERSETUJUAN JUDUL

Usulan Judul Proposal yang diajukan oleh saudara:

Nama

: Wiwik

Stambuk

: 10539 1119 13

Program Studi

: Pendidikan Fisika

No	Judul	Diterima	Ditolak	Paraf
1	Pengaruh Media Visual Pada Pembelajaran Fisika Terhadap Hasil Belajar Peserta Didik Kelas X	V		12/13
2	Pengaruh Model Pembelajaran Contextual Teaching and Learning Menggunakan Media Terhadap Pemahaman Konsep Fisika SMA Kelas X		7	V
3	Pengaruh Metode Pemberian Tugas Diakhir Proses Pembelajaran Fisika Terhadap Hasil Belajar Siswa SMA	· L	1	

Setelah diperiksa / diteliti telah memenuhi persyaratan untuk diproses. Adapun Pembimbing / Konsultan yang diusulkan untuk dipertimbangkan oleh Bapak Dekan/ Wakil Dekan I adalah :

Pembimbing: 1. Dra. Hj. Bunga Dara Amin, M.Ed

2. Dra. Hj. Aisyah Azis, M.Pd

Makassar, 2 Mei 2017

Ketua Prodi,

Nuruna, S.Si., M.Pd

NBM. 991 339

Lembar Pernyataan Observasi

Kegiatan observasi di SMA Negeri 5 Jeneponto yang dilaksanakan pada bulan Mei 2017 oleh mahasiswa dari Universitas Muhammadiyah Makassar.

Yang melaksanakan kegiatan observasi ini adalah:

Nama

: Wiwik

NIM

: 10539 1119 13

Program studi : Strata Satu (S1)

Jurusan

: Pendidikan Fisika

Fakultas Keguruan dan Ilmu Pendidikan (FKIP)

5 Jeneponto

Mahasiswa bersangkutan telah melaksanakan kegiatan observasi sebagai langkah awal untuk melaksanakan penelitian.

Makassar, Mei 2017

Menyetujui

Guru Mata Pelajaran

Jumanai., S.Pd

Harigowa Bahar

NIP: 19591211 198602 2 005

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

BERITA ACARA

	Made Visual Rook Pembelaloron Fisiko Tertocoby Hosel
Belator Peserto Did	IK Kelas XI di SMA Neseri 5 Jeneponta
Dari Mahasiswa ;	
Nama	. WIWIK
Stambuk / NIM	10639 1119 13
Jurusan	Pendidikan Fisiko
Moderator	Riskawati, S.Pd., M.Pd
Hasil Seminar	
Alamat/Tlp	at Sulton Abuddin 3
Hipotesis, Dou	Fours, hipotes the ade, ciji hypula tok a
Hipotesis, Dou	Rep.
Hipotesis, DOV	Rep MA
isetujui:	. WAP
isetujui:	Town, M.Si., M.pd
isetujui: enanggap I : Dr. Muh. enanggap II : Dr. Hs. B	Towil, M.Si., M.Pd ()
Pisetujui: enanggap I : Dr. Muh. enanggap II : Dr. HJ. B	Lingo Daro Amin, M. Ed Bancong, S. Pd., M. Pd

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN PROGRAM STUDI PENDIDIKAN FISIKA

Jalan Sultan Alauddin No. 259 Makassar Telp. 866772

SURAT KETERANGAN PERBAIKAN UJIAN PROPOSAL

Berdasarkan hasil ujian:

Nama

: Wiwik

Nim

: 10539 1119 13

Program Studi

: Pendidikan Fisika

Judul

: Penerapan Media Visual pada Pembelajaran Fisika

Terhadap Peningkatan Hasil Belajar Peserta Didik Kelas

XI di SMA Negeri 5 Jeneponto

Oleh tim penguji, harus dilakukan perbaikan-perbaikan. Perbaikan tersebut dilakukan dan telah disetujui oleh tim penguji.

No	Tim Penguji	Disetujui tanggal	Tanda tangan
1.	Dr. Muh. Tawil, M.Si., M.Pd	20/8/12	1
2.	Dr.Hj. Bunga Dara Amin, M.Pd	28/08/2017	deal
3.	Hartono Bancong, S.Pd., M.Pd	23/08/2017	The
4.	Riskawati, S.Pd., M.Pd	29/08/2017	he

Makasssar,

Agustus 2017

Mengetahui;

Ketua Prodi

Pendidikan Fisika

Nurlina, S.Si., M.Pd NIDN. 0923078201

PUSAT PENGEMBANGAN SAINS DAN PENDIDIKAN FMIPA UNM MAKASSAR

Alamat: Jl.Daeng Tata Kampus UNM Parangtambung Makassar, Prodi Pendidikan IPA

SURAT KETERANGAN VALIDASI

No: 141/ P2SP/ X/ 2017

Yang bertanda tangan di bawah ini, penanggung jawab Pusat Pengembangan Sains dan Pendidikan FMIPA UNM dengan ini menerangkan bahwa Instrumen Penelitian (RPP, LKPD dan Instrumen) yang diajukan oleh:

Nama

: Wiwik

NIM

: 10539111913

dan setelah divalidasi isi dan konstruk oleh Tim Validator, maka dinyatakan valid untuk digunakan dalam penelitiannya dengan judul:

Penerapan Media Visual pada Pembelajaran Fisika Terhadap Peningkatan Hasil Belajar Peserta Didik Kelas XI di SMA Negeri 5 Jeneponto.

Demikian surat keterangan ini dibuat untuk digunakan sesuai keperluan.

Makassar, 11 Oktober 2017

Koordinator,

P2SP FMIPA UNM

1 1963 231 198903 1 377

UNIVERSITAS MUHAMMADIYAH MAKASSAR FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Nomor

: 1364/FKIP/A.1-II/IX/1438/2017

Lampiran

: 1 (Satu) Rangkap Proposal

Hal

: Pengantar LP3M

Kepada Yang Terhormat LP3M Unismuh Makassar

Di-

Makassar

Assalamu Alaikum Wr. Wb

Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar menerangkan dengan sebenarnya bahwa Mahasiswa tersebut yang namanya di bawah ini :

Nama

: WIWIK

NIM

: 10539 1119 13

Jurusan

: Pendidikan Fisika

Alamat

: Jl. Sultan Alauddin III

Adalah yang bersangkutan akan mengadakan penelitian dan penyelesaian skripsi.

Dengan judul : Penerapan Media Visual pada Pembelajaran Fisika terhadap Peningkatan Hasil Belajar Peserta Didik Kelas

XI di SMA Negeri 5 Jeneponto

Demikian disampaikan atas kerja sama yang baik kami ucapkan terima kasih.

Wassalamu Alaikum Wr. Wb

Makassar, September 2017

UNIVERSITAS MUHAMMADIYAH MAKASSAR

LEMBAGA PENELITIAN PENGEMBANGAN DAN PENGABDIAN KEPADA MASYARAKAT-

Jl. Sultan Alauddin No. 259 Telp.866972 Fax (0411)865588 Makassar 90221 E-mail :lp3munismuh@plasa.com

06 Muharram 1439 H

26 September 2017 M

التحديد _ומנה ונשבון

Nomor: 2137/Izn-5/C.4-VIII/IX/37/2017

: 1 (satu) Rangkap Proposal

Lamp Hal

: Permohonan Izin Penelitian

Kepada Yth.

Bapak Gubernur Prov. Sul-Sel

Cq. Kepala UPT P2T BKPMD Prov. Sul-Sel

di -

Makassar

النسك المترعليكم وركحة المغروبكانة

Berdasarkan surat Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar, nomor: 1364/FKIP/A.1-II/IX/1439/2017 tanggal 25 September 2017, menerangkan bahwa mahasiswa tersebut di bawah ini :

: WIWIK

No. Stambuk : 10539 1119 13

Fakultas

Fakultas Keguruan dan Ilmu Pendidikan

Jurusan

: Pendidikan Fisika

Pekerjaan

: Mahasiswa

Bermaksud melaksanakan penelitian/pengumpulan data dalam rangka penulisan Skripsi dengan judul:

"Penerapan Media Visual pada Pembelajaran Fisika terhadap Peningkatan Hasi Belajar Peserta Didik Kelas XI di SMA Negeri 5 Jeneponto"

Yang akan dilaksanakan dari tanggal 30 September 2017 s/d 30 Nopember 2017.

Sehubungan dengan maksud di atas, kiranya Mahasiswa tersebut diberikan izin untuk melakukan penelitian sesuai ketentuan yang berlaku.

Demikian, atas perhatian dan kerjasamanya diucapkan Jazakumullahu khaeran katziraa.

السَّلَامُ عَلَيْكُمْ وَرَحَمَةُ الْعَمْ وَيُوكِانَّهُ

bubakar Idhan, MP.

VBM 101 7716

09-17

Nomor

: 14236/S.01P/P2T/09/2017

KepadaYth.

Lampiran:

Kepala Dinas Pendidikan Prov. Sulsel

Perihal

: Izin Penelitian

di-

Tempat

Berdasarkan surat Ketua LP3M UNISMUH Makassar Nomor : 2137/lzn-05/C.4-VIII/IX/37/2017 tanggal 26 September 2017 perihal te**r**sebut diatas, mahasiswa/peneliti dibawah ini:

Nama

: WIWIK

Nomor Pokok

: 10539111913 : Pend. Fisika

Program Studi Pekerjaan/Lembaga

: Mahasiswa(S1)

Alamat

: Jl. Sultan Alauddin No. 259, Makassar

Bermaksud untuk melakukan penelitian di daerah/kantor saudara dalam rangka penyusunan Skripsi, dengan judul :

" PENERAPAN MEDIA VISUAL PADA PEMBELAJARAN FISIKA TERHADAP PENINGKATAN HASIL BELAJAR PESERTA DIDIK KELAS XI DI SMA NEGERI 5 JENEPONTO "

Yang akan dilaksanakan dari : Tgl. 30 September s/d 30 November 2017

Sehubungan dengan hal tersebut diatas, pada prinsipnya kami **menyetujui** kegiatan dimaksud dengan ketentuan yang tertera di belakang surat izin penelitian.

Demikian Surat Keterangan ini diberikan agar dipergunakan sebagaimana mestinya.

Diterbitkan di Makassar Pada tanggal : 26 September 2017

A.n. GUBERNUR SULAWESI SELATAN
KEPALA DINAS PENANAMAN MODAL DAN PELAYANAN TERPADU SATU
PINTU PROVINSI SULAWESI SELATAN

Selaku Administrator Pelayanan Perizinan Terpadu

A. M. YAMIN, SE., MS.

Pangkat : Pembina Utama Madya Nip : 19610513 199002 1 002

Tembusan Yth

- 1. Ketua LP3M UNISMUH Makassar di Makassar:
- 2. Pertinggal.

PEMERINTAH PROVINSI SULAWESI SELATAN DINAS PENDIDIKAN

Jalan Perintis Kemerdekaan Km. 10 Tamalanrea Telepon 586083., Fax.584959 MAKASSAR 90245

Makassar, 29 September 2017

Nomor

: 070 / 400 - FAS.3/DISDIK

Lampiran

Hal

: Izin Penelitian

Kepada

Yth. Kepala SMAN 5 Jeneponto

Tempat

Dengan hormat,

Berdasarkan surat Kepala Dinas Penanaman Modal dan Pelayanan Terpadu Satu Pintu Prov. Sulsel Nomor 14236/S.01P/P2T/09/2017 Tanggal 26 September 2017 perihal Izin Penelitian oleh mahasiswa tersebut di bawah ini :

Nama

WIWIK

Nomor Pokok

: 10539 1119 13

Program Studi

: Pend. Fisika

Pekerjaan/Lembaga : Mahasiswa (S1)

: Jl. Sultan Alauddin No. 259, Makassar

Yang bersangkutan bermaksud untuk melakukan penelitian di SMA Negeri 5 Jeneponto dalam rangka penyusunan Skripsi, dengan judul:

" PENERAPAN MEDIA VISUAL PADA PEMBELAJARAN FISIKA TERHADAP PENINGKATAN HASIL BELAJAR PESERTA DIDIK KELAS XI DI SMA NEGERI 5 JENEPONTO "

Waktu Pelaksanaan : 30 September s.d 30 Novemeber 2017

Pada prinsipnya kami menerima dan menyetujui kegiatan tersebut, sepanjang tidak bertentangan dengan ketentuan dan perundang-undangan yang berlaku.

Demikian surat ini dibuat untuk dipergunakan sebagaimana mestinya.

KEPALA DINAS PENDIDIKAN

Kepala Bidang Fasilitasi Paud, Dikdas, Dikmas Dan Dikti A

Drs. AHMAD FARUMBIAN, M.Pd

Pangkat: Pembina Tk. I

: 196008291 198710 1 002

- 1. Kepala Dinas Pendidikan Provinsi Sulawesi Selatan (sebagai laporan);
- Pertinggal.

PEMERINTAH PROVINSI SULAWESI SELATAN DINAS PENDIDIKAN SMA NEGERI 5 JENEPONTO

Alamat : Jl. Poros Makassar-Bantaeng, Km 100 Bodobaji Desa Camba-Camba Kec. Batang Telp (0419)2425632 KP.92361

SURAT KETERANGAN PENELITIAN

NO: 217/I06.5/SMA.05/MN/2017

Yang bertanda tangan di bawah ini Kepala SMA Negeri 5 Jeneponto menerangkan bahwa :

Nama

: WIWIK

Tempat Tanggal Lahir

: Kalumpang Lompoa, 12 Februari 1995

NIM

: 10539111913

Program Studi

: Pendidikan Fisika

Fakultas

: Keguruan dan Ilmu Pendidikan

Perguruan Tinggi

: Universitas Muhammadiyah Makassar

Judul

: Penerapan Media Visual pada Pembelajaran Fisika

terhadap peningkatan hasil belajar peserta didik Kelas. kelas XI

211 198602 2 005

di SMA Negeri 5 jeneponto

Alamat

: Kalumpang Lompoa, Desa Kalumpang Loe Kab.Jeneponto.

Yang tersebut namanya diatas telah melaksanakan penelitian di SMA Negeri 5 Jeneponto, Kelas XI MIA.3 dari Tanggal 18 Oktober sampai dengan 18 November 2017.

Demikian surat keterangan ini dibuat dan diberikan kepada yang bersangkutan untuk dipergunakan sebagaimana mestinya.

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN PROGRAM STUDI PENDIDIKAN FISIKA

Jalan Sultan Alauddin No. 259 Makassar Telp. 866772

KONTROL PELAKSANAAN PENELITIAN

Nama Mahasiswa

: Wiwik

Nim

: 10539111913

Judul Penelitian

: Penerapan Media Visual Pada Pembelajaran Fisika Terhadap Peningkatan

Hasil Belajar Peserta didik Kelas XI di SMA Negeri 5 Jeneponto

Tanggal Ujian Proposal: Selasa, 22 Agustus 2017

Pelaksanaan Kegiatan Penelitian:

No.	Tanggal	Kegiatan	Paraf Guru Kelas
1.	18/04tober 62017	Perrosuron Surat Penelitian	4
2.	19/ Oktober 6017	Pelakkonoon Pretest (tes auto)	4
3.	21 /OKtober (2017	Pelaksanoan Kibim moteri konsep usaha	4
4.	26/0 ktober (2017	Pelaktoroon 1491atan Belatar Mensalar Konsep Energi	4
5.	28/oktober (2017	Pebksonoon Kesiatan Belabr Mensabr Hukum keketaban Grensi Metanik	4
6.	02/September/2017		4
7.	oy/spoker/2017	Petrik sonoon Kesicitan Belatar Mensabr Kanser Gerak hannan's sederhana pada ciyunan Bandul	4
8.	09/November/2019	Pelaksanoan Kegiatan Belabi Mengabir Konsep Gerak harmonis podo Pegas	7
9.	11/November/2017	Petikeanoan Kesiatan beialar mangajar Konsep Persamoan 6Hs dan Energi	E
10.	16/November (2017	Pernantapan Materi	4,
11.	18/ November/2017	Melokearokan pass tes (tes ochir)	4
12.	,		1
13.			

PENNY Sesuai dengan aslinya

CHERALAISEKOLAH

HARIGOWA

19591211/198602 2 005

Jeneponto,

November 2017

KARTU KONTROL SKRIPSI PROGRAM STUDI PENDIDIKAN FISIKA FKIP UNIVERSITAS MUHAMMADIYAH MAKASSAR

Nama Mahasiswa

: WIWIK

NIM: 10539 1 119 13

Pembimbing 1

: Dr. Hj. Bunga Dara Amin, M.Ed.

Pembimbing 2

: Dra. Hj. Aisyah Azis, M.Pd.

	Materi Bimbingan	PEMBIM	BING I	PEMBIMBING 2			
No.	Materi Binibingan	Tanggal	Paraf	Tanggal	Paraf		
1	A. PENYUSUNAN LAPORA	V	0				
1	Ide Penelitian	02/05-2017	4	63/05-2017			
2	Kajian Teori Pendukung	24/05-2017	h	30/05-2017	20,7		
3	Metode Penelitian	30/05-2017	1	30/05-2017	1		
4	Persetujuan Seminar	31/05-2017.	y	19/2-2017	16		
	B. PELAKSANAAN PENELI	TIAN	٥				
1	Instrumen Penelitian	04/12/2017	\$1	07/12/2017	10-		
2	Prosedur Penelitian	07/12/2017	4	07/12/2017			
3	Analisis Data	11/12/2017	M	2 Dert			
-	Hasil dan Pembahasan	11/12/2017	1	12-12	1		
4			11/				
5	Kesimpulan	11/12/2017	V		1		
5	Kesimpulan C. PERSIAPAN UJIAN SKR						

Mengetahui, Ketua Prodi

Pendidan Fisika

Nuching S.Si., M.Pd

BIODATA

Wiwik, dilahirkan di Jeneponto pada tanggak 12 Februari 1995, anak pertama dari 2 bersaudara, buah hati dari pasangan Ayahanda Massalisi dan Ibunda Nurmiati. Penulis masuk sekolah dasar pada tahun 2001 di SDN Inpres

Kalumpang Lompoa No. 140 Kabupaten Jeneponto dan tamat tahun 2007. Tamat SMP Negeri I Batang tahun 2010, dan tamat SMA Negeri 5 Jeneponto tahun 2013. Pada tahun yang sama (2013), penulis melanjutkan pendidikan pada program Strata 1 (S1) Program Studi Pendidikan Fisika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Makassar dan selesai tahun 2017.