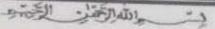
SKRIPSI

"ANALISIS LAJU DAN VOLUME SEDIMEN AKIBAT BANGUNAN SABO DAM 7.6 DI HULU SUNGAI JENEBERANG"

PROGRAM STUDI TEKNIK PENGAIRAN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH MAKASSAR 2019

ERSITAS MUHAMMADIYAH MAKASSAR



FAKULTAS TEKNIK

GEDUNG MENARA IQRA LT. 3

3l. Sultan Alauddin No. 259 Telp. (0411) 866 972 Fax (0411) 865 588 Makassar 90221 Website: www.unismuh.ac.id, e-mail: unismuh@gmail.com

Website: http://teknik.unismuh.makassar.ac.id

PENGESAHAN

Skripsi atas nama Rusli dengan nomor induk Mahasiswa 105 81 2159 14, dinyatakan diterima dan disahkan oleh Panitia Ujian Tugas Akhir/Skripsi sesuai dengan Surat Keputusan Dekan Fakultas Teknik Universitas Muhammadiyah Makassar Nomor : 0001/SK-Y/22201/091004/2019, sebagai salah satu syarat guna memperoleh gelar Sarjana Teknik pada Program Studi Teknik Pengairan Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Makassar pada hari Sabtu tanggal 24 Agustus 2019

Panitia Ujian:

Makassar,

6 Jumadil Akhir 1440 H 26 Agustus 2019 M

- 1. Pengawas Umum
 - a. Rektor Universitas Muhammadiyah Makassar Prof. Dr. H. Abdul Rahman Rahim, SE., MM.
 - b. Dekan Fakultas Teknik Universitas Hasanuddin Dr. Ir. H. Muhammad Arsyad Thaha MT
- 2. Penguji
 - a. Ketua : Dr ir H. Darwis Panguriser o M.Si.
 - b. Sekertaris Muh. Amir Zainuddin ST Ju
- 3. Anggota
- Dr. Hi Arsyum Ali Musta
- Ir Mahmuddin, ST., MT. IRM
- 3. Amrollah Mansida, ST., MT., IPM

WHAMMAD,

Mengetahui

Pembimbing I

Dr. Ir M. Muhammad Idrus Ompo, Sp., PSDA.

Pembimbing II

Dr. Ir. Nenne T Karim, ST., MT IPM

Janley

Dekan

amzalt Al Imran, ST., MT

UNIVERSITAS MUHAMMADIYAH MAKASSAR

FAKULTAS TEKNIK

GEDUNG MENARA IQRA LT. 3

M. Sultan Alauddin No. 259 Telp. (0411) 866 972 Fax (0411) 865 588 Makassar 90221 Website: www.unismuh.ac.id, e-mail: unismuh@gmail.com Website: http://teknik.unismuh.makassar.ac.id

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan untuk memenuhi syarat ujian guna memperoleh gelar Sarjana Teknik (ST) Program Studi Teknik Pengairan Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Makassar.

Judul Skripsi : ANALISIS LAJU DAN VOLUME SEDIMEN AKIBAT BANGUNAN

SABO DAM 7.6 DI HULU SUNGAI JENEBERANG.

Nama : RUSLI

Stambuk : 105 81 2159 14

Makassar, 26 Agustus 2019

Telah Diperiksa dan Disetujui Oleh Dosen Pembanhing.

Pembimbing I

Pembimbing II

H. Muhammad Idrus Ompo, Sp., PSDA.

OSTAK Dr. Ir. Nenny T Karim, ST., MT., IPM

Mengetahui, Ketua Program Studi Teknik Pengairan Jurusan Teknik Sipil

Andi Makbul Syamsuri, ST.,MT., IPM

NBM: 1183 084

KATA PENGANTAR

Syukur Alhamdulillah kami panjatkan atas kehadirat Allah S.W.T., karena rahmat-Nya sehingga penulis mampu menyelesaikan skripsi berjudul "Analisis Laju Dan Volume Sedimen Akibat Bangunan Sabo Dam 7.6 Di Hulu Sungai Jeneberang" sebagai salah satu syarat untuk menyelesaikan studi di Fakultas Teknik Jurusan Sipil Pengairan Universitas Muhammadiyah Makassar.

Melalui skripsi ini kami mengucapkan terima kasih atas segala bantuan, bimbingan, saran dan petunjuk sehingga skripsi 1 ini dapat diselesaikan. Oleh karena itu, pada kesempatan kali ini penulis ingin menyampaikan rasa hormat dan banyak terima kasih kepada:

- 1. Bapak Ir. Hamzah Al Imran, S.T., M.T., selaku Dekan Fakultas Teknik Universitas Muahammadiyah Makassar.
- 2. Bapak Andi Makbul Syamsuri, S.T., M.T., selaku Ketua Jurusan Sipil Pengairan Fakultas Teknik Universitas Muhammadiyah Makassar.
- 3. Bapak dan Ibu Dosen serta para staf administrasi pada Jurusan Teknik Sipil Pengairan Fakultas Teknik Universitas Muhammadiyah Makassar.
- 4. Bapak Dr. Ir H. Muhammad Idrus Ompo, Sp., PSDA Selaku Pembimbing pertama bersama dengan Ibu Dr. Ir. Nenny T Karim, S.T., M.T. Selaku Pembimbing kedua Yang Meluangkan Waktu Membimbing Kami.
- Kedua Orang tua kami yang selalu memberi dukungan secara moril maupun material dan doa kepada kami.

 Saudara/saudari kami di Fakultas Teknik Jurusan Sipil Pengairan khususnya angkatan Vektor 2014.

Serta semua pihak yang turut membantu penyusunan proposal ini yang tidak dapat penulis sebutkan satu persatu, dengan dukungan dan doa dari kalian akhirnya kami dapat menyelesaikan proposal ini.

Kami menyadari keterbatasan kami sehingga mungkin dalam penyusunan tugas akhir ini masih terdapat beberapa kekurangan dan kesalahan.oleh karena itu, kami menerima saran dan masukan dari pembaca yang sifatnya membangun demi perbaikan studi kami ini.

"Billahi Fii Sabilill Hak Fastabiqul Khaerat"

Makassar, 2019

Tim Penulis

DAFTAR ISI

HALAMAN JUDUL	i
KATA PENGANTAR	ii
DAFTAR ISI	iv
DAFTAR PERSAMAAN	vii
DAFTAR GAMBAR	viii
DAFTAR TABEL	ix
BAB I PENDAHULUAN	
A. Latar Belakang	1
B. Rumusan Masalah	3
C. Tujuan Penelitian	3
D. Batasan Masalah	3
E. Manfaat Penelitian	4
F. Sistematika Penulisan	4
BAB II KAJIAN PUSTAKA	
A. Sungai	6
1. Sungai Jeneberang	7
B. Erosi	8
1. Defenisi Erosi	8
2. Tipe Erosi	10
3. Faktor dan Dampak Erosi	10
C. Hidrologi	13

	1. Hidrologi Sungai	13
	2. Luas Penampang Basah	13
	3. Sifat Sifat Aliran	14
	4. Kecepatan Aliran	15
	5. Debit Aliran	18
D.	Sedimen	19
	1. Defenisi Sedimen	19
	2. Sedimentasi	23
	3. Mekanisme Pengangkutan Sedimen	25
	4. Karakteristik Sedimen	27
	5. Volume Tampungan	29
	6. Laju Sedimentasi	30
	7. Debris Flow	31
E.	Bangunan Sabo Dam	34
	1. Sketsa dan Fungsi Sabo Dam	35
	2. Bangunan Sabo di Bagian Hulu (upper stream)	
	Sungai Jeneberang	37
BAB I	II METODE PENELITIAN	
A.	Lokasi dan Waktu Penelitian	40
В.	Pengambilan Data	41
C.	Variabel Penelitian	42
D.	Alat dan Bahan	42
	1. Alat	42

2. Bahan	42
E. Prosedur Penelitian	43
F. Tahapan Penelitian	43
1. Persiapan	43
G. Metode Analisis	44
H. Bagan Alur Penelitian	45
BAB IV HASIL DAN PEMBAHASAN	
A. Perhitungan Karakteristik Sedimen	46
1. Perhitungan Diameter Sedimen	46
2. Perhitungan Kadar Lumpur	49
3. Perhitungan Debit Sedimen	50
4. Perhitungan Dengan Penelitian Langsung	57
5. Perhitungan Volume Tampungan	58
6. Perhitungan Laju Sedimen (Suripin, 2002)	60
BAB V PENUTUP	
A. Kesimpulan	62
B. Saran	62
DAFTAR PUSTAKA	64
DAFTAR LAMPIRAN	74
DAFTAR DOKUMENTASI	78

DAFTAR PERSAMAAN

Persamaan 1 : Luas Penampang Basah (segiempat)	13
Persamaan 2: Luas Penampang Basah (trapezium)	14
Persamaan 3: Luas Penampang Basah (segitiga)	14
Persamaan 4: Kecepatan Aliran (carrent mater)	16
Persamaan 5 : Jumlah Putaran Propeller per detik	16
Persamaan 6: Kecepatan Aliran (PC No.88-51 jika N < 3,9)	17
Persamaan 7: Kecepatan Aliran (PC No. 88-51 jika N > 3,9)	17
Persamaan 8: Kecepatan Aliran (PC No.2-85- jika N < 0,50)	17
Persamaan 9: Kecepatan Aliran (PC No.2-85- jika N > 0,50)	17
Persamaan 10 : Debir Aliran	18
Persamaan 11 : Konsentrasi Sedimen Melayang	29
Persamaan 12 : Luas Alas bangunan SaboDam	29
Persamaan 13 : Volume Tampungan	29
Persamaan 14 : Debit aliran harian	30
Persamaan 15 : Debit Sedimen Dasar	31
Persamaan 16 : Debit Total Sedimen	31

DAFTAR GAMBAR

Gambar 1: Bagan Alir Model Proses Oleh Air	9
Gambar 2: Jarak Kecepatan Maksimun dan efek kekerasan dasar saluran	16
Gambar 3: Distribusi Kecepatan Aliran	16
Gambar 4 : Siklus Terjadinya Sedimen	21
Gambar 5: Proses Sedimentasi Normal dan Sidementasi Dipercepat	22
Gambar 6: Ragam Gerakan Sedimen dalam Air	26
Gambar 7: Bangunan Sabo Dam	35
Gambar 8: Lokasi penempatan Sabo Dam Sungai Jeneberang	38
Gambar 9: Peta Lokasi Penelitian Sabo Dam Sungai Jeneberang	40
Gambar 10: Bagan Alur Penelitian	45
Gambar 11: Grafik Analisa Saringan Bangunan Sabo Dam 7.6	49
Gambar 12: Grafik Hubungan Antara Kedalaman dan Luas	51
Gambar 13: Grafik Hubungan Antara Kedalaman dan Luas	52
Gambar 14: Grafik Perbandingan antara kedalaman dan kecepatan di hilir	54
Gambar 15: Grafik Perbandingan antara kedalaman dan kecepatan di hulu	56
STAKAAN	

DAFTAR TABEL

Tabel 1: Dampak Erosi Tanah	12
Tabel 2: Klasifikasi ukuran butiran menurut American Geophysical Union	33
Tabel 3: Macam dan Fungsi Bangunan Sabo Dam	36
Tabel 4: Kapasitas bangunan pengendali Sabo Dam di Upper Stream	39
Tabel 5: Hasil Pengujian Analisa Saringan Bangunan Sabo Dam 7.6	47
Tabel 6: Hasil Pengujian Kadar Lumpur Bangunan Sabo Dam 7.6	49
Tabel 7: Luas Penampang Hilir Bangunan Sabo Dam 7.6	50
Tabel 8: Luas Penampang Hulu Bangunan Sabo Dam 7.6	51
Tabel 9: Kecepatan Hilir Bangunan Sabo Dam 7.6	53
Tabel10 : Kecepatan Hulu Bangunan Sabo Dam 7.6	54
Tabel11 : Rekapitulasi Bangunan Sabo Dam 7.6	56
Tabel12: Kapasitas bangunan pengendali Sabo Dam di Upper Stream	58

DAFTAR NOTASI SINGKATAN

Q = Debit aliran (m^3/s)

Qsm = Debit sedimen melayang (ton/tahun)

Qsd = Debit sedimen dasar (ton/tahun)

A = Luas penampang basah (m²)

H = Kedalaman (m)

B = Lebar(m)

m = Kemiringan

r = Jumlah putaran baling baling currentmeter

t = Waktu (detik)

N = Banyaknya putaran propeller per detik

A dan b = Konstanta yang dapat dari kalibrasi alat

Cs = Konsentrasi sedimen melayang (mg/liter)

LA = Luas alas (m^2)

Vol = Volume (m^3)

a = Lebar(m)

T = Tinggi(m)

BABI

PENDAHUALUAN

A. Latar Belakang

Sungai adalah aliran air yang besar dan memanjang yang mengalir secara terus menerus dari hulu menuju hilir. Sungai juga merupakan sarana yang sangat penting dalam proses pengangkutan sedimen, sungai berfungsi untuk mengalirkan sedimen-sedimen dari hasil erosi yang nantinya akan diteruskan ke laut. Sedimentasi adalah proses pengendapan material yang terangkut oleh aliran dari bagian hulu. Proses sedimentasi meliputi proses erosi, transportasi (angkutan), pengendapan (deposition) dan pemadatan dari sedimentasi itu sendiri. Sungai-sungai membawa sedimen dalam setiap alirannya. Sedimentasi tersebut menimbulkan pendangkalan badan perairan seperti sungai, waduk, bendungan atau pintu air dan daerah sepanjang sungai, yang dapat menimbulkan banjir.

Bencana sedimen merupakan salah satu bencana yang sering terjadi di daerah aliran sungai Jeneberang khususnya di daerah Hulu, pada dasarnya kawasan rawan bencana sedimen umumnya memiliki kesuburan yang tinggi sehingga mudah mendapatkan mata pencaharian seperti kawasan sepanjang bantaran sungai, daerah pegunungan, pantai, lembah dan lerenggunung, sehingga senantiasa menggoda manusia secara turun temurun untuk berdomisili pada kawasan tersebut sekalipun mereka menyadari bahwa daerah tersebut rawan bencana.

Banyak upaya - upaya yang telah dilakukan oleh pemerintah untuk menanggulangi bencana sedimen, salah satunya adalah dengan membangun Sabo Dam. Pembangunan Sabo Dam di bagian hulu dilakukan untuk mengendalikan pergerakan sedimen (debris flow). Pengendalian aliran debris di bagian hulu dilakukan dengan membangun sabo dam yang berlokasi paling dekat dengan dinding kaldera gunung Bawakaraeng. Bangunan sabo ini memiliki fungsi utama agar mampu mengantisipasi terjadinya erosi lateral dan tingginya aliran debris yang terjadi.

Pada bagian ini dibangun 7 (tujuh) unit Sabo Dam dengan initial SD 7-1 sampai dengan SD 7-7. Setelah beberapa kali mengalami kerusakan dan perbaikan, akhirnya pada bagian tengah (yang paling lemah) dipasang beton dengan menggunakan metode ISM (insitu site mixing) dan CSG (cemented sand and gravel).

Sabo Dam 7.6 merupakan Sabo Dam yang selesai dibangun pada tahun 2010 di Hulu Sungai Jeneberang. Sabo Dam ini merupakan Sabo Dam tipe terbuka yang juga berfungsi untuk menghambat aliran debris (aliran debris adalah aliran sungai dengan konsentrasi sedimen tinggi pada sungai dengan kemiringan sangat curam, aliran ini seringkali membawa batu-batu dan batangpohon), sekaligus mencegah gerakan laju sedimen agar tidak membahayakan dan menimbulkan kerugian.

Berdasarkan hasil peninjauan di Lapangan ke adaan Sabo Dam 7.6 sudah mengalami kerusakan berat seperti berkaratnya serta patahnya

besi pada bangunan sabo dam yang disebabkan karena pergeseran tumpukan sedimen yang tak kunjung di keruk. Akibat dari tumpukan sedimen itupun mempengaruhi aliran sedimen laju sedimen yang terjadi di Hulu sungai Jeneberang.

B. Rumusan Masalah

Permasalahan yang akan dikaji dalam penelitian ini adalah :

- 1. Bagaimana laju sedimen yang terjadi bangunan Sabo Dam 7.6?
- 2. Bagaimana besar volume sedimen yang tertampung di bangunan Sabo Dam 7.6 ?

C. Tujuan Penelitian

Tujuan yang hendak dicapai dalam penelitian ini adalah :

- 1. laju sedimen yang terjadi di bangunan Sabo Dam 7.6
- 2. Menghitung besar volume sedimen yang tertampung di bangunan Sabo Dam 7.6

D. Batasan Masalah

Dengan memperhatikan latar belakang, maka batasan – batasan dan asumsi awal antara lain .

- Penelitian ini di fokuskan pada laju sedimen yang terjadi pada bangunan sabo dam 7.6 sungai jeneberang.
- 2. Penelitian ini juga menghitung volume angkutan sedimen.
- 3. Pada penelitian ini tidak melakukan penelitian jenis tanah
- 4. Pada penelitian ini tidak melakukan penelitian tentan gerosi
- 5. Pada penelitian ini tidak melakukan penelitian tentan galiran debris

6. Pada penelitian ini tidak melakukan penelitian tentang hidrologi

E. Manfaat Penelitian

Manfaat dari penelitian ini adalah:

1. Manfaat teoritis

Untuk mengetahui sedimen dan laju aliran sedimen serta kondisi yang terjadi pada bangunan Sabo Dam 7.6 di Hulu Sungai Jeneberang.

2. Manfaat praktis

Diharapkan hasil penelitian dapat memberikan manfaat sebagai bahan informasi dan tambahan pengetahuan bagi mahasiswa jurusan teknik sipil pengairan pada khususnya serta mahasiswa jurusan lain pada umumnya mengenai sedimen, laju aliaran sedimen, dan bangunan pengendali sedimen Sabo Dam 7.6

F. Sistematika Penulisan.

Guna memperjelas dan mempermudah bagi pembaca dalam memahami atau mengkajikan dungan skrips ini, perlu disusun sistematika penulisan. Adapun sistematika penulisan ini dibagi menjadi tiga bagianyaitu:

Bagian awal skripsi terdiri dari halaman judul, halaman pengesahan, sari, motto dan persembahan, kata pengantar dan berbagai daftar meliputi daftar isi, daftar gambar, daftar tabel, daftar lampiran, daftar notasi, dan daftar surat keterangan.

Bagian isi skripsi terdiri dari 5 (lima) bab, yang meliputi:

BAB I PENDAHULUAN merupakan bab pendahuluan dari tulisan ini, yang berisi latar belakang studi, rumusan masalah, tujuan dari penelitian, batasan masalah yang diangkat, manfaat penelitian dan sistematika penulisan berupa gambaran singkat dari tiap-tiap bab yang ada di dalam tulisan ini.

BAB II TINJAUAN PUSTAKA dalam bab ini akan diberikan uraian secara teoritis tentang sungai, bangunan Sabo Dam, karakteristik sedimen, hidrolika aliran, sedimentasi, volume tampungan bangunan Sabo Dam.

BAB III METODE PENELITIAN menguraikan lokasi dan waktu penelitian, tahapan penelitian, dan metode penelitian.

BAB IV HASIL DAN PEMBAHASAN menjelaskan hasil analisa penelitian yang di peroleh dari lapangan dan laboratorium .

BAB V KESIMPULAN DAN SARAN bab ini merupakan penutup dari keseluruhan penulisan dengan berisikan kesimpulan yang didapatkan dari studi yang dilakukan dan saran untuk bahan referensi pelaksanaan studi selanjutnya atau yang serupa.

Bagian akhir skripsi terdiridari daftar pustaka dan lampiran.

BAB II

TINJAUAN PUSTAKA

A. Sungai

Sungai merupakan saluran terbuka yang terbentuk secara alamiah di atas permukaan bumi dimana air mengalir dengan muka air bebas. Setiap sungai memiliki karakteristik dan bentuk yang berbeda antara satu dengan yang lainnya, hal ini disebabkan oleh banyak faktor diantaranya topografi, iklim, maupun segala gejala alam dalam proses pembentukkannya. Sungai yang menjadi salah satu sumber air, tidak hanya menampung air tetapi juga mengalirkannya dari bagian hulu ke bagian hilir (Ayu Marlina Humaira, 2014).

Persoalan sungai yang menarik untuk diamati adalah terjadinya perubahan morfologi sungai. Perubahan ini terjadi secara alami maupun karena banyaknya perlakuan yang ada di sepanjang sungai, misal adanya bendungan, waduk, jembatan, dan karena kondisi alam yang tidak dapat dihindarkan seperti adanya tikungan sungai. Perubahan yang terjadi pada dasar sungai yang diakibatkan oleh pergerakan sedimen yang terbawa oleh arus sungai dan pengendapan akan terjadi bila material yang akan dipindahkan jauh lebih berat dari pada gaya penyebab pergerakan. Hal ini dapat mempengaruhi kemiringan atau terjadinya erosi pada dinding atau pada tebing atau tanggul yang dapat mengakibatkan terjadinya longsor (Ayu Marlina Humaira, 2014).

1. Sungai Jeneberang

Sungai Jeneberang adalah salah satu sungai di Sulawesi Selatan yang tergolong kritis dan merupakan salah satu sungai yang mengalirkan airnya di Kota Makassar, genangan air yang terbesar di kota Makassar terjadi pada tahun 1996 yang meliputi 2/3 wilayah Kota Makassar terendam air. Kejadian tersebut adalah merupakan salah satu alasan pembangunan waduk Bili–Bili yang telah beroperasi sejak tahun 1998. Sungai Jeneberang sendiri memiliki hulu sungai disekitar pegunungan Lompobattang dengan puncak tertinggi adalah Gunung Bawakaraeng. Longsor di hulu DAS Jeneberang adalah merupakan longsor dinding kaldera Gunung Bawakaraeng. Sehubungan dengan hal itu maka di pandang perlu dilakukan penelitian mengenai sedimentasi yang terjadi di sungai Jeneberang tersebut (Massinai, dkk. 2011).

Kondisi geologi DAS Jeneberang di dominasi oleh endapan aluvial sungai, danau dan pantai (Qac). Aluvium ini menempati di sepanjang sungai induk Jeneberang sampai terhampar di bagian hilir DAS dan di sepanjang pantai (Massinai, dkk. 2011).

B. Erosi

1. Defenisi Erosi

Erosi adalah suatu proses atau peristiwa hilangnya lapisan permukaan tanah atas, baik di sebabkan oleh pergerakan air maupun angin (suripin 2004). Erosi merupakan tiga proses yang berurutan, yaitu pelepasan (detachment), penganguktan (transportation), dan pengendapan (deposition), bahan-bahan tanah oleh penyebab erosi (Asdak, 1995).

Di Daerah-Daerah tropis yang lembab seperti di Indonesia maka air merupakan penyebab utama terjadinya erosi, Erosi tanah yang di sebabkan oleh air meliputi 3 tahap (Suripin, 2004).

- a. Tahap pelepasan partikel tunggal dari massa tanah.
- b. Tahap pengangkutan oleh media yang tererosi seperti aliran air dan angin.
- c. Tahap pengendapan, pada kondisi dimana energi yang tersedia tidak cukup lagi untuk mengangkut partikal.

Menurut Suripin (2004), Berdasarkan bentuknya erosi dibedakan menjadi 7 tipe, diantaranya yaitu:

- a. Erosi percikan adalah terlepas atau terlemparnya partikel-partikel tanah dari massa tanah akibat pukulan butiran air hujan secara langsung.
- b. Erosi aliran permukaan (overland flow erosion) akan terjadi jika intensitas atau lamanya hujan melebihi kapasitas infiltrasi atau kapasitas simpan air tanah.

- c. Erosi alur (*rill erosion*) adalah pengelupasan yang di ikuti dengan pengangkutan partikel-partikel tanah oleh aliran air larian yang terkonsentrasi di dalam saluran-saluran air.
- d. Erosi parit/selokan (*gully erosion*) membentuk jajaran parit yang lebih dalam dan lebar dan merupakan tingkat lanjutan dari erosi alur.
- e. Erosi tebing sungai (streambank erosion) adalah erosi yang terjadi akibat pengikisan tebing oleh air yang mengalir dari bagian atas tebing atau oleh terjangan arus sungai yang kuat terutama pada tikungantikungan.
- f. Erosi enternal (*internal of subsurface erosion*) adlah proses terangkatnya partikel partikel tanah ke bawah masuk ke celah celah atau pori pori akibat adanya aliran bawah permukaan.
- g. Tanah longsor (*land slide*) merupakan bentuk erosi dimana pengangkutan atau gerakan massa tanah yang terjadi pada suatu saat dalam volume yang relative besar

Gambar 1 bagan alir model proses oleh air. (sumber ; Suripin, 2004)

2. Tipe Erosi

Menurut Asdak (2004), proses erosi terdiri atas tiga bagian yang berurutan: pengelupasan (*detachment*), pengangkutan (*transportation*), dan pengendapan (*sedimentation*). Beberapa tipe erosi yang ditemukan untuk daerah tropis adalah:

- 1) Erosi percikan (*flash erosion*), yaitu proses terkelupasnya partikelpartikel tanah bagian atas oleh tenaga kinetik air hujan bebas atau air lolos.
- 2) Erosi permukaan (*sheet erosion*), yaitu erosi yang terjadi ketika lapisan tipis permukaan tanah di daerah berlereng terkikis oleh kombinasi air hujan dan air aliran (*run off*).
- 3) Erosi alur (*rill erosion*), yaitu pengelupasan yang diikuti dengan pengangkutan partikel-partikel tanah oleh air aliran yang terkonsentrasi di dalam saluran air.
- 4) Erosi parit (*gully erosion*), yaitu erosi yang membentuk jajaran parit yang lebih dalam dan lebar serta merupakan lanjutan dari erosi alur.
- 5) Erosi tebing (*streambank erosion*), yaitu pengikisan tanah pada tebing-tebing sungai dan penggerusan dasar sungai oleh aliran air sungai.

3. Faktor dan Dampak Erosi

Arsyad (2006), Faktor-faktor yang menyebabkan terjadinya erosi adalah iklim, tanah, topografi, vegetasi dan pengelolaan. Faktor iklim yang besar pengaruhnya adalah hujan yang melalui tenaga kinetiknya

menghancurkan partikel-partikel tanah dan kontribusinya terhadap aliran permukaan. Faktor tanah meliputi tekstur, struktur, infiltrasi dan kandungan bahan organik. Faktor topografi umumnya dinyatakan dalam kemiringan dan panjang lereng. Erosi akan meningkat dengan semakin besarnya kemiringan dan panjang lereng. Pengaruh vegetasi penutup lahan terhadap erosi adalah melindungi permukaan tanah dari tumbukan air hujan, menurunkan kecepatan dan volume run off, menahan partikel-partikel tanah pada tempatnya melalui sistem perakaran dan serasa yang dihasilkan, serta mempertahankan kemantapan kapasitas tanah dalam menyerap air.

Menurut Arsyad (2006), beberapa dampak erosi di tempat kejadian erosi (*on-site*) yaitu antara lain :

- 1. kehilangan unsur hara dan kerusakan struktur tanah;
- kemerosotan produktivitas tanah atau bahkan menjadi tidak dapat dipergunakan untuk berproduksi;
- 3. kerusakan bangunan konservasi dan bangunan lainnya; dan
- 4. pemiskinan petani. Sedangkan dampak yang terjadi di luar tempat kejadian

Tabel 1. Dampak Erosi Tanah

Dampak	Dampak di tempat kejadian	Dampak diluar tempat
	erosi	kejadian erosi
	a. Kehilangan lapisan tanah	a. Pelumpuran dan
	yang baik bagi	pendangkalan waduk,
	berjangkarnya akar	sungai, saluran dan badan
	tanaman	air lainnya
	b. Kehilangan unsur hara	b. Tertimbunnya lahan
	dan kerusakan struktur	pertanian, jalan dan
	tanah	bangunan lainnya
	c. Peningkatan	c. Menghilangkan mata air
	penggunaan energi untuk	dan memburuknya kualitas
Langsung	produksi	air
Langsung	d. Kemerosotan	d. Ke <mark>rusa</mark> kan ekosistem
	produktifitas tanah atu	perairan (tempat bertelur
	bahkan menjadi tidak	ikan, terumbu karang dan
	dapat dipergunakan	sebagainya)
	untuk berproduksi	e. Kehilangan nyawa dan
	e. Kerusakan bangunan	harta oleh banjir
	konservasi dan	f. Meningkatnya frekuensi
	bangunan lainnya	dan masa kekeringan
	f. Pemiskinan petani	
	penggarap/ pemilik tana	
	a. Berkurangnya alternatif	a. Kerugian oleh
	penggunaan tanah	berkurangnya umur waduk
	b. Timbulnya	b. Meningkatnya frekuensi
Tidak	dorongan/tekanan untuk	dan besarnya banjir
langsung	membuka lahan baru	5
larigading	c. Timbulnya keperluan	
	akan perbaikan lahan	180
	dan bangunan yang	CAN
	rusak	

Sumber : Arsyad (2006)

C. Hidrologi

1. Hidrolika Sungai

Menurut Chow (1992), Bahwa Saluran yang mengalirkan air dengan suatu permukaan bebas disebut saluran terbuka, menurut asalnya saluran dapat digolongkan menjadi saluran buatan Saluran alami meliputi semua alur air yang terdapat secara alamiah di bumi, mulai dari selokan kecil di pegunungan, kali, sungai besar sampai ke muara sungai, dan aliran air di bawah tanah dengan permukaan bebas.

Sifat-sifat hidrolika saluran alam biasanya sangat tidak menentu, Dalam beberapa hal dapat dibuat anggapan yang cukup sesuai dengan pengamatan dan pengalaman sesungguhnya, sehingga aliran pada saluran ini dapat diterima untuk menyelesaikan analisa hidrolika teoritis. Studi selanjutnya tentang perilaku aliran pada saluran alam memerlukan pengetahuan dalam bidang lain, seperti hidrologi, geomorfologi, angkutan sedimen dan sebagainya, Hal ini merupakan ilmu tersendiri yang disebut hidrolika sungai. (Chow,1992).

2. Luas Penampang Basah

Menurut (Chow, 1959), Luas penampang basah adalah luas penampang melintang aliran yang tegak lurus arah aliran. Adapun beberapa rumus luas penampang basah, sesuai dengan bentuknya:

1) Penampang segiempat

 $A = b \times h$(1)

Dimana:

3) Penampang Segitiga

$$A = m.h^2$$
....(3)

Dimana:

m = Kemiringan

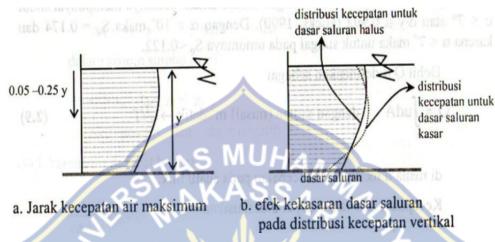
h = Kedalaman (m)

3. Sifat-sifat Aliran

1) Aliran Seragam dan tak seragam

Aliran saluran terbuka dikatakan seragam apabila kedalaman aliran sama pada setiap penampang saluran. Suatu aliran seragam dapat bersifat tetap dan tidak tetap tergantung apakah kedalamannya berubah sesuai dengan perubahan waktu. Sedangkan aliran disebut berubah (varied), bila kedalaman aliran berubah di sepanjangsa luran. Aliran beruba tetap maupun tak tetap (Chow, 1992).

2) Aliran Laminer dan Turbulen


Aliran adalah laminer bila gaya kekentalan relatif sangat besar dibandingkan dengan gaya inersia sehingga kekentalan berpengaruh besar terhadap perilaku cairan, Dalam aliran laminer butir-butir air seolaholah bergerak menurut lintasan tertentu yang teratur dan lurus dan selapis cairan yang sangat tipis seperti menggelincir diatas lapisan disebelahnya. Sedangkan aliran turbulen adalah bila gaya kekentalan relative lemah dibandingkan dengan gaya kelembamannya. Pada aliran turbulen, butir-butir aliran air bergerak menurut lintasan yang tidak teratur, tidak lancar maupun tidak tetap, walaupun butir-butir tersebut tetap menunjukan gerak maju dalam aliran secara keseluruhan (Chow,1992).

4. Kecepatan Aliran


Kecepatan aliran disebabkan oleh tekanan pada muka air akibat adanya perbedaan fluida antara udara dan air juga akibat gaya gesekan pada dinding saluran (dasar maupun tebing saluran) maka kecepatan aliran pada suatu potongan melintang saluran tidak seragam (Chow 1959).

Selanjutnya Chow (1959), mengatakan bahwa kecepatan maksimum umumnya terjadi pada jarak 0,05 sampai 0,25 dikalikan kedalaman airnya dihitung dari permukaan air seperti pada gambar (2.4.a). Namun pada sungai yang sangat lebar dengan kedalaman dangkal (*shallow*), kecepatan maksimum terjadi pada permukaan air (Robert. J Kodatie, 2009). Makin sempit saluran kecepatan maximumnya

makin dalam. Kekasaran dasar saluran juga mempengaruhi distribusi kecepatan seperti ditujukan pada gambar berikut.

Gambar 2. Jarak kecepatan maksimum dan efek kekasaran dasar saluran Sumber :Addison.1944;Chow.1959 dalam Robert. J Kodatie, 2009

Gambar 3. Distribusi kecepatan aliran untuk beberapa macam bentuk saluran (Chow, 1959 dalam Robert. J Kodatie, 2009)

Current Meter Kecepatan aliran (V) didapat dari pengukuran current meter (tipe propeller atau tipe prise). Hubungan antara putaran per detik (N) dari alat ukur ini dengan kecepatan air dinyatakan dalam persamaan sebagai berikut:

$$V = a(N) + b$$
....(4)

$$N = \frac{r}{t}... \tag{5}$$

Dimana:

a dan b = Konstanta yang didapat dari kalibrasi alat;

N = Banyaknya putaran propeller per detik.

r = Jumlah putaran baling-baling current meter

t = Waktu (detik)

Alat ini dilengkapi penghitung elektronik yang menunjukkan putaran baling-baling. Dengan adanya kalibrasi, maka alat ini dapat langsung digunakan dimana banyaknya putaran perdetik dicatat dalam alat dan tinggal masukkan dalam rumus (tidak perlu mencari luas penampang basah dari saluran).

Rumus kecepatan aliran dapat diketahui sesuai dengan tipe oss current meter yang digunakan.

1) PC. No. 88 – 51, jika :

$$N < 3.9$$
 maka $V = 0.0593$ N + 0.0131 (m/det)(6)

$$N > 3.19$$
 maka $V = 0.0526$ N + 0.0345 (m/det).....(7)

2) PC. No. 2-85-11, jika:

$$N < 0.50$$
 maka $V = 0.4533$ N + 0.0106 (m/det).....(8)

$$N > 0.50$$
 maka $V = 0.4905$ $N + 0.008$ (m/det)....(9)

5. Debit Aliran

Debit aliran adalah laju aliran air (dalam bentuk volume air) yang melewati suatu penampang melintang sungai persatuan waktu. Dalam sistem satuan SI besarya debit dinyatakan dalam satuan meter kubik per detik (m³/det) (Chay Asdak, 2014).

Pengukuran debir aliran dilapangan pada dasarnya dapat dilakukan melalui empat kategori (Chay Asdak, 2014):

- 1) Pengukuran volume air sungai.
- 2) Pengukuran debit dengan cara mengukur kecepatan aliran dan menentukan luas penampang melintang sungai dan menggunakan rumus:

(Q=V x A).....(10)

Dimana:

Q = debit aliran (m³/det)

V = kecepatan aliran (m/det)

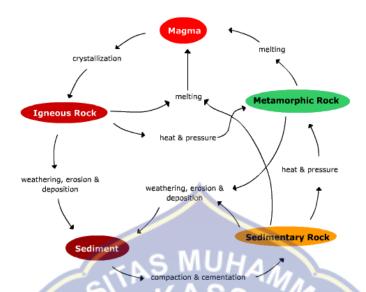
A = luas penampang (m²)

- 3) Mengukur debit dengan menggunakan bahan kimia (pewarna) yang dialirkan dalam aliran sungai (substance tracing method).
- 4) Pengukuran debit dengan dengan membuat bangunan pengukur seperti weir (aliran air lambat) atau flume (aliran air cepat)

D. Sedimen

1. Defenisi Sedimen

Hasil sedimen biasanya di peroleh dari pengukuran sedimen terlarut dalam sungai (*Suspended Sedimen*) atau dengan pengukuran langsung di dalam waduk/sungai, dengan kata lain bahwa sedimen merupakan pecahan, organic yang di transforkan dari berbagai sumber dan di endapkan oleh media udara, angin,es, atau oleh air dan juda termasuk di dalamnya material yang di endapkan dari material yang melayang dalam air atau dalam bentuk larutan kimia (Asdak, 1995).

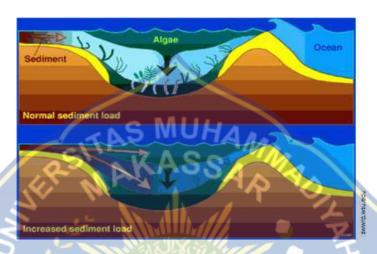

Sedangkan menurut (Arsyad Sitanala, 2010) sedimen yang di hasilkan oleh proses erosi dan terbawa oleh aliran air akan di endapkan pada suatu tempat yang kecepatan airnya melambat atau terhenti peristiwa pegendapan ini dikenal dengan peristiwa atau proses sedimentasi, yaitu proses yang bertanggung jawab atas terbentuknya dataran-dataran alluvial yang luas dan banyak terdapat di dunia, merupakan suatu keuntungan oleh karena dapat memberikan lahan untuk perluasan pertanian atau permukiman.

menurut Suripin (2002), Bahwa Sedimentasi dan erosi merupakan proses terlepasnya butiran tanah dari induknya di suatu tempat dan terangkutnya material tersebut oleh gerakan air atau angin kemudian diikuti dengan pengendapan material yang terdapat di tempat lain

Terjadinya erosi dan sedimentasi menurut Suripin (2002), tergantung dari beberapa faktor yaitu karakteristik hujan, kemiringan lereng, tanaman penutup dan kemampuan tanah untuk menyerap dan melepas air ke dalam lapisan tanah dangkal, dampak dari erosi tanah dapat menyebabkan sedimentasi di sungai sehingga dapat mengurangi daya tampung sungai. Sejumlah bahan erosi yang dapat mengalami secara penuh dari sumbernya hingga mencapai titik kontrol dinamakan hasil sedimen (sediment yield).

Hasil sedimen tersebut dinyatakan dalam satuan berat (ton) atau satuan volume (m3) dan juga merupakan fungsi luas daerah pengaliran. Dapat juga dikatakan hasil sedimen adalah besarnya sedimen yang berasal dari erosi yang terjadi di daerah tangkapan air yang diukur pada periode waktu dan tempat tertentu (Asdak C, 2007).

sedimentasi adalah proses mengendapnya material fragmental oleh air sebagai akibat dari adanya erosi. Proses mengendapnya material tersebut yaitu proses terkumpulnya butir-butir tanah yang terjadi karena kecepatan aliran air yang mengangkut bahan sedimen mencapai kecepatan pengendapan (settling velocity). Proses sedimentasi dapat terjadi pada lahanlahan pertanian maupun di sepanjang dasar sungai, dasar waduk, muara dan sebagainya (Asdak, 1995).



Gambar 4. Siklus Terjadinya Sedimen (Sumber : Tambanga, 2008)

Menurut Asdak (1995), Berdasarkan proses terjadinya erosi tanah dan proses sedimentasi, maka proses terjadinya sedimentasi dapat dibedakan menjadi dua bagian yaitu: Proses sedimentasi secara geologis (Normal); yaitu

- a. Proses erosi tanah dan sedimentasi yang berjalan secara normal atau berlangsung secara geologi, artinya proses pengendapan yang berlangsung masih dalam batas-batas yang diperkenankan atau dalam keseimbangan alam dari proses degradasi dan agradasi pada perataan kulit bumi akibat pelapukan.
- b. Proses sedimentasi dipercepat ; yaitu proses terjadinya sedimentasi yang menyimpang dari proses secara geologi dan berlangsung dalam waktu yang cepat, bersifat merusak atau merugikan dan dapat mengganggu keseimbangan alam atau

kelestarian lingkungan hidup, Kejadian tersebut biasanya disebabkan oleh kegiatan manusia dalam mengolah tanah, Cara mengolah tanah yang salah dapat menyebabkan erosi tanah dan sedimentasi yang tinggi.

Gambar 5 : Proses Sedimentasi Normal dan Sedimentasi dipercepat (Sumber : swwtc.wsu.edu, 2000)

Menurut Soemarto (1999), sebagai akibat dari adanya erosi, sedimentasi memberikan beberapa dampak, yaitu:

1. Di sungai

Pengendapan sedimen di dasar sungai yang menyebabkan naiknya dasar sungai, kemudian mengakibatkan tingginya muka air sehingga berakibat sering terjadi banjir.

2. Di saluran

Jika saluran irigasi dialiri air yang penuh sedimen, maka akan terjadi pengendapan sedimen di saluran, Tentu akan diperlukan biaya yang cukup besar untuk pengerukan sedimen tersebut dan pada keadaan

tertentu pelaksanaan pengerukan menyebabkan terhentinya operasi saluran.

3. Di waduk

Pengendapan sedimen di waduk akan mengurangi volume efektif waduk yang berdampak terhadap berkurangnya umur rencana waduk.

4. Di bendung atau pintu-pintu air

Pengendapan sedimen mengakibatkan pintu air kesulitan dalam mengoperasikan pintunya, mengganggu aliran air yang lewat melalui bendung atau pintu air, dan akan terjadi bahaya penggerusan terhadap bagian hilir bangunan jika beban sedimen di sungai berkurang karena telah mengendap di bagian hulu bendung, sehingga dapat mengakibatkan terangkutnya material alas sungai.

2. Sedimentasi

Tanah atau bagian-bagian tanah yang terangkut oleh air dari suatu tempat yang mengalami erosi pada suatu daerah aliran sungai (DAS) dan masuk kedalam suatu badan air secara umum disebut sedimen. Sedimen yang dihasilkan oleh proses erosi dan terbawa oleh aliran air akan diendapkan pada suatu tempat yang kecepatan alirannya melambat atau terhenti. Peristiwa pengendapan ini dikenal dengan peristiwa atau proses sedimentasi. (Arsyad, 2010).

Proses sedimentasi berjalan sangat komplek, dimulai dari jatuhnya hujan yang menghasilkan energi kinetik yang merupakan permulaan dari proses erosi. Begitu tanah menjadi partikel halus, lalu menggelinding bersama aliran, sebagian akan tertinggal di atas tanah sedangkan bagian lainnya masuk ke sungai terbawa aliran menjadi angkutan sedimen (Arsyad, 2010).

Faktor-faktor yang mempengaruhi Sedimentasi (Komariah, 2014), adalah:

1. Jumlah dan instensitas hujan

Jumlah hujan yang besar tidak selalu menyebabkan erosi berat jika intensitasnya rendah, dan sebaliknya hujan lebat dalam waktu singkat mungkin juga hanya menyebabkan sedikit erosi karena jumlahhujanya sedikit. Jika jumlah dan intensitas hujan keduanya tinggi,maka erosi tanahyang terjadi cenderung tinggi dan mengakibatkan terjadinya sedimentasi yang tinggi juga.

2. Formasi geologi dan tanah

Tanah yang mempunyai nilai erodibilitas tinggi berarti tanah tersebut peka atau mudah tererosi, sebaliknya tanah dengan erodibilitas rendah berarti tanah tersebut resisten atau tahan terhadap erosi

3. Tataguna lahan

Dengan adanya penggunaan lahan, seperti penanaman tnaman di sekitar Daerah Aliran Sungai DAS dengan tataguna lahannya terganggu atau rusak, maka akan mengurangi kapasitas infiltrasi, sehingga dengan demikian aliran permukaan akan meningkat dan dapat menimbulkan erosi yang menyebabkan adanya sedimentasi

4. Erosi di bagian hulu

Erosi merupakan faktor yang mempengaruhi sedimentasi karena sedimentasi merupakan akibat lanjud dari erosi itu sendiri

5. Tepografi

Tampakan rupa bumi atau tepografi seperti kemiringan lahan, kerapatan parit atau saluran dan bentuk cekungan mempunyai pengaruh pada sedimentasi.

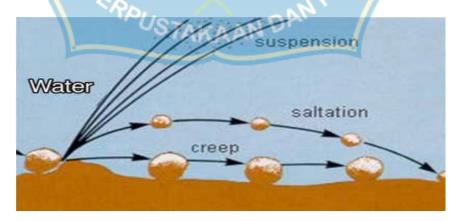
3. Mekanisme Pengangkutan Sedimen

Menurut Aditya (2003), Bahwa Mekanisme pengangkutan butir-butir tanah yang dibawa dalam air yang mengalir dapat digolongkan menjadi beberapa bagian sebagai berikut:

a. Wash Load Movement

Butir-butir tanah yang sangat halus berupa lumpur yang bergerak bersama- sama dalam aliran air, konsentrasi sedimen merata di semua bagian pengaliran. Bahan wash load berasal dari pelapukan lapisan permukaan tanah yang menjadi lepas berupa debu-debu halus selama musim kering. Debu halus ini selanjutnya dibawa masuk ke saluran atau sungai baik oleh angin maupun oleh air hujan yang turun pertama pada musim hujan, sehingga jumlah sedimen pada awal musim hujan lebih banyak dibandingkan dengan keadaan yang lain.

b. Suspended Load Movement


Butir-butir tanah bergerak melayang dalam aliran air. Gerakan butirbutir tanah ini terus menerus dikompresir oleh gerak turbulensi aliran sehingga butir-butir tanah bergerak melayang di atas saluran. Bahan suspended load terjadi dari pasir halusyang bergerak akibat pengaruh turbulensi aliran, debit, dan kecepatan aliran. Semakin besar debit, maka semakin besar pula angkutan suspended load.

c. Saltation Load Movement

Pergerakan butir-butir tanah yang bergerak dalam aliran air antara pergerakan suspended load dan bed load. Butir-butir tanah bergerak secara terus menerus meloncatloncat (skip) dan melambung (bounce) sepanjang saluran tanpa menyentuh dasar saluran. Bahan-bahan saltation load terdiri dari pasir halus sampai dengan pasir kasar.

d. Bed Load Movement

Merupakan angkutan butir-butir tanah berupa pasir kasar (coarse sand) yang bergerak secara menggelinding (rolling), mendorong dan menggeser (pushing and sliding) terus-menerus pada dasar aliran yang pergerakannya dipengaruhi oleh adanya gaya seret (drag force) aliran yang bekerja di atas butir-butir tanah yang bergerak.

Gambar 6. Ragam Gerakan Sedimen dalam Air (Sumber : Aditya, 2003)

Menurut Aditya (2003), Bahwa Pada saluran terbuka, aliran air akan memiliki suatu permukaan bebas yang berkaitan langsung dengan parameter-parameter aliran seperti kecepatan, kekentalan, gradien dan geometri saluran, Tipe aliran pada saluran terbuka yaitu;

- 1. Aliran Permanen (Steady Flow)
- 2. Aliran Tidak Permanen (*Unsteady Flow*)
- 3. Aliran Merata (*Uniform Flow*)
- 4. Aliran Tidak Merata (Non Uniform Flow)

4. Karakteristik Sedimen

Kata sedimen berasal dari bahasa latin "Sedimentum" yang artinya "Pengendapan" (Friedman 1978). Terkait dengan kata sedimen, Rifardi (2008) mendefinisikan Sedimen sebagai proses terbentuknya endapan dari partikel – partikel yang terbawa oleh air, angin, es maupun gletser. Partikel sedimen ini biasanya merupakan material yang berasal dari hasil pelapukan batuan dan pengikisan permukaan bumi.

Menurut Friedman (1978), mengatakan sedimen adalah kerak bumi yang ditransformasikan dari suatu tempat ketempat lain baik secara vertical maupun secara horizontal.

Siswanto (2007), Mendefinisikan sedimen sebagai sekumpulan rombakan material (batuan, mineral dan bahan organik) dengan ukuran butiran tertentu, Ukuran Partikel Sedimen Ukuran partikel merupakan karakteristik sedimen yang dapat di ukur secara nyata.

Abdul Ghani, dkk. (2012) menggunakan klasifikasi berdasarkan standar U.S. Army Corps Engineer (*USACE*) untuk analisa saringan sampel sedimen, Syahrul Purnawan, dkk. (2001) mengunakan teknik analisis penyaringan dengan metode ayakan basah yang menggunakan saringan sedimen bertingkat dengan diameter berbeda-beda.

Tabel 2. Klasifikasi ukuran butiran menurut American Geophysical Union

Interval/range (mm)	Nama	Interval/range (mm)	Nama
4096 - 2048	Batu sangat besar (Very Large Boulders)	1/2-1/4 (Med	Pasir sedang lium Sand)
2048 - 1024	Batu besar	1/4-1/8	Pasir halus
	(Large Boulders)		(Fine Sand)
1024 - 5 <mark>12</mark>	Batu sedang	1/8-1/16	Pasir sangat halus
	(Medium Boulders)		(Very Fine Sand)
512 - 256	Batu kecil	1/16-1/32	Lumpur kasar
	(Small Boulders)		(Coarse Silt)
256 - 128	Kerakal besar	1/32-1/64	Lumpur sedang
T	(Large Cobbles)		(Medium Silt)
128 - 64	Kerakal kecil	1/64-1/128	Lumpur halus
	(S <mark>mall Cobbles)</mark>		(Fine Silt)
64 - 32	Kerikil sangat besar	1/128-1/256	Lumpur sangat halus
	(Very Coa <mark>rse Gra</mark> vel)	12	(Very Fine Silt)
32 - 16	Kerikil kasar	1/256-1/512	Lempung kasar
	(Coarse Gravel)	MARIL	(Course Clay)
16 - 8	Kerikil sedang	1/512-1/1024	Lempung sedang
	(Medium Gravel)		(Medium Clay)
8 - 4	Kerikil halus	1/1024-1/2048	Lepung halus
	(Fine Gravel)		(Fine Clay)
4 - 2	Kerikil sangat halus	1/2048-1/4096	Lempung sangat
halus	-		
	(Very Fine Gravel)		(Very Fine Clay)
2 - 1	Pasir sangat kasar		Koloid
	(Very Coarse Sand)		
1 - 12	Pasir kasar		
	(Coarse Sand)		

Sumber: Garde dan Raju, (1985).

Konsentrasi sedimen (Cs) adalah banyaknya sedimen yang tersuspensi dalam volume air tertentu. Pengukuran dilakukan dengan cara mengambil sampel/contoh air dan membawa ke laboratorium untuk dapat diketahui konsentrasi sedimen dalam satuan ppm (*part per million*) atau mg/liter (Supangat,2014).

Perhitungan konsentrasi sedimen (Cs) dengan rumus yang digunakan persamaan yaitu :

$$Cs = \frac{Ws}{Wtotal}$$

(11)

Dimana:

Cs = Konsentrasi SedimenMelayang

Ws = Berat Kadar Lumpur

Wtotal = Air + Berat Kadar Lumpur

5. Volume Tampungan

Berdasarkan data Penulis BBWS Pompengan Jeneberang menghitung volume tampungan berdasarkan garis kontur, dimulai dari garis kontur paling bawah sampai kontur teratas yang menjadi tampugan air pada kondisi normal maupun banjir, Dengan garis kontur yang berupa polygon tertutup, dengan software card dapat dihitung luasnya. Bila ada pulau atau gundukan maka luasnya dikurangi dengan luas dari kontur yang elevasinya sama dari pulau atau

gundukan tersebut.

Berdasar daftar elevasi dan luas dapat dihitung volume ruang dengan rumus prisma segitiga sebagai berikut :

$$LA = \frac{1}{2} \times a \times t$$
....(12)

Dimana:

LA = Luas alas (m^2)

Vol= Volume (m³)

a = Lebar(m)

t = Tinggi (m)

6. Laju Sedimentasi

Menurut Syamsuddin Aris (2016), Laju sedimentasi adalah jumlah hasil sedimen per satuan luas daerah tangkapan air (DTA) atau daerah aliran sungai (DAS) per satuan waktu (dalam satuan ton/ha/th atau mm/th)

Faktor yang menentukan laju sedimentasi, antara lai:

- 1) Jumlah dan intensitas hujan
- 2) Tipe tanah dan formasi geologi
- 3) Penutupan tanah
- 4) Penggunaan lahan
- 5) Topografi
- 6) Kondisi drainasi alami yang meliputi: bentuk, jaringan, kerapatan, gradien, ukuran, dan arah
- 7) Runoff
- 8) Karakteristik sedimen, seperti ukuran butir dan mineralogi; dan
- 9) Karakteristik hidrolika saluran (sungai)

Perhitungan besarnya debit sedimen harian menurut Suripin (2002), dihitung dengan rumus :

$$Qsm = 0.0864 Cs Qw$$
....(14)

Dimana:

Qsm = Debit sedimen melayang (ton/hari)

Qw = Debit aliran harian (m³/det)

Cs = Konsentrasi sedimen layang (mg/ltr)

Qsd = Debit sedimen dasar (ton/hari)

0,0864= Konversi satuan dari kg/sekke ton/hari

= 60 x 60 x 24 x 365 (ton/hari)

7. Debris Flow

1) Defenisi Debris Flow (Aliran Debris)

Menurut Udiana (2011), Bahwa Aliran debris adalah suatu fenomena dari gerakan sedimen yang berada di tebing gunung atau pada lembah dengan kemiringan lebih dari 15° dan disebabkan oleh hujan di daerah torrent atau akibat salju. Aliran air yang bercampur batu, tanah, pasir dan batang kayu mengalir dengan kecepatan tinggi dan mempunyai daya rusak yang besar.

kecepatan aliran debris dengan sedimen material kasar mempunyai kecepatan antara 2 – 20 m/dtk. Dengan kekuatan dan kecepatan yang demikian, aliran ini mampu mengangkat bongkah – bongkah batu besar

dan mampu menggeser konstruksi jembatan dan permukiman yang dilaluinya, Bencana aliran debris sangat berbahaya dapat merusak rumah, sawah, jalan dan bangunan lain bahkan menghilangkan jiwa manusia. Meskipun berbagai cara komputer telah diterapkan pada penelitian gerakan tanah, pada saat ini belum dapat diperoleh cara setepat-tepatnya yang dapat memenuhi persyaratan untuk keperluan pelaksanaan bangunan teknik. Untuk lingkungan yang lebih longgar, pada asasnya masalah peramalan gerakan tanah didekati dengan memanfaatkan gagasan (Udiana 2011).

2. Menurut Udiana (2011), Sumber Aliran Debris yaitu:

a) Hujan yang deras

Pada waktu musim hujan dengan hujan yang deras di daerah hulu, akan terjadi pula aliran yang besar dan akan membawa atau mengangkut rombakan dari longsoran tersebut ke daerah yang lebih rendah/hilirnya. Yang patut diwaspadai pada kondisi ini adalah apabila musim hujan, curah hujan 70 mm/jam, jika ada gejala-gejala seperti : hujan turun, tetapi air sungai surut dan ada beberapa batang pohon dan kayu yang hanyut di sungai.

b) Longsoran

Terjadinya longsoran-longsoran pada tebing yang terjal (misalnya tebing-tebing sungai yang terjal), sehingga terjadi pembendungan pada sungai, yang merupakan kolam/empang. Akibat hujan, tekanan air terus bertambah, maka akan mengakibatkan terjadinya limpas atau bobol, bila

pembendungan tersebut tidak kuat menahan air (tekanan air), sehingga terjadi banjir bersama-sama rombakan tersebut.

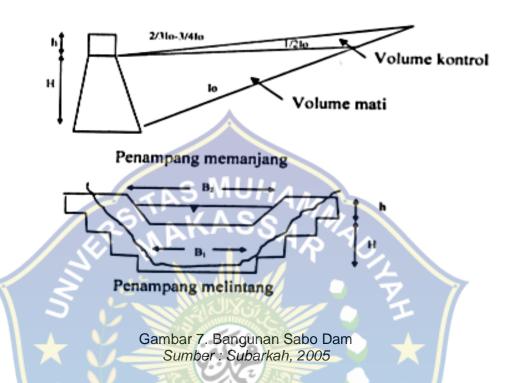
c) Letusan gunung berapi

Indonesia terletak pada deretan zona vulkanik aktif Trans Asiatik dan Sirkum Pasifik yang merupakan sumber bencana alam aliran debris. Adanya aktivitas gunung berapi menyebabkan timbunan bebatuan dan tanah di atas gunung menjadi runtuh dan akan terus turun bersama air hujan melalui aliran sungai dan menjadi aliran debris Terjadinya letusan gunung api, magma yang keluar dari kepundan/kawahnya merupakan rombakan batuan-batuan, sehingga terjadi akumulasi rombakan di daerah hulu. Bila terjadi hujan di daerah timbunan atau sebelah hulunya dan tergantung besar kecilnya curah hujan tersebut, maka akan terjadi proses gerakan debris/rombakan.

d) Gempa bumi

Gempa bumi dapat disebabkan oleh kegiatan gunung api dan gerakan patahan bumi. Adanya gempa bumi menyebabkan tanah bergetar, sehingga timbunan bebatuan dan tanah di atas gunung menjadi runtuh dan akan terus turun bersama air hujan melalui aliran sungai dan menjadi aliran debris. Aliran debris disebabkan oleh pengaliran air yang berlangsung pada permukaan lapisan endapan pada dasar sungai dalam bentuk transport kolektif yang mengalir karena tenaga sedimen dan umumnya suatu aliran yang mempunyai sungai kurang dari orde tiga (orde

pertama dan orde kedua) dengan kemiringan dasar sungai lebih curam dari 1/30.


E. Bangunan Sabo Dam

Sabo Dam adalah salah satu bagian dari bangunan penanggulangan sedimen yang bekerja dalam suatu system "Sabo works". Adapun tujuan dari "Sabo works" pada suatu daerah tangkapan sungai adalah untuk mengendalikan produksi sedimen seperti pasir, krikil, dan sebagainya, mencegah runtuhan dan erosi tanah, mengendalikan dan menangkap sedimen yang terbawa aliran banjir sehingga dapat menjaga stabilitas dasar sungai dan mencegah bencana akibat produksi sedimen yang berlebihan. Dengan system Sabo works, jumlah aliran sedimen yang merusakkan harus dapat dikurangi, atau dengan kata lain setelah adanya fasilitas Sabo works maka jumlah aliran sedimen tahunan berkurang hingga mencapai nilai jumlah sedimen yang diijkan, yaitu jumlah aliran sedimen yang tidak merusak bagian hilir sungai. (Satria Andi Sena, 2016).

1. Sketsa dan Fungsi Sabo Dam

Bentuk sabo dam sangat bervariasi, tergantung kondisi dan situasi setempat, antara lain: konfigurasi palung sungai (sempit, lebar, dalam atau dangkal) dan jenis material sedimen (pasir, kerikil, batau atau tanah) serta fungsi sampingannnya. Bentuk tipikal sabo dam yang banyak dijumpai di Indonesia adalah kategori impermeable, karena air turut tertampung bersama material sedimen terutama yang berdiameter cukup besar seperti batu dalam berbagai ukuran. Bagian-bagian sabo dam antara lain: puncak

dam, pelimpah, sayap, apron, sub dam, lubang drip, dinding apron dan cut off. Sketsa bangunan sabo dam tipe tertutup dapat dilihat pada gambar

Adapun empat fungsi pokok Sabo Dam menurut (sumaryono A) adalah:

- Membuat dasar sungai lebih landau sehingga dapat mencegah erosi vertical dasar sungai;
- 2) Mengatur arah aliran untuk mencegah erosi lateral dasar sungai;
- 3) Menstabilkan kaki bukit untuk menghindari terjadinya longsoran;
- 4) Menahan dan mengendalikan sedimen yang akan mengalir ke arah hilir

Tabel 3. Macam dan Fungsi Bangunan Sabo Dam

No	Macam	Fungsi Utama	Lokasi
1	Dam penahan bertingkat (stepped dam	bertingkat 2 Mencegah perluasan	
2	Dam pengendali (check dam)	 Mengendalikan sedimen : menahan,menampung, mengontrol Memperkecil energy aliran debris Mereduksi debit puncak sedimen 	- Pada palung sungai - Bentuk frofil U
3	Dam stabilisator (consolidation dam /bottom controller)	Menstabilkan dasar Mengarahkan aliran	- Diseblah hilir dasar yang distab <mark>i</mark> litasi
4	Kantong sedimen (sand pocket)	Mencegah penyebaran aliran sedimrn Menampung sedimen	- kipas alluvial
5	Kanalisasi (channel works)	Menstabilkan alur sungai agar tidak berpindah	- Kipas alluvial
6	Tanggul pengarah (training dike)	 mencegah sedimen/debris mengarahkan aliran sedimen/ debris 	- Tempat –tempat rawan limpasan
7	Lindungan tebing (bank protection)	Melindungi tebing terhadap erosi	- Pada tebing yang rawan terhadap erosi

Sumber: Hasil Penelitian Ahmad Rifqi Asrib – 2012 (Institut Pertanian Bogor)

Bangunan Sabo di Bagian Hulu (upper stream) SungaiJeneberang

Pembangunan Sabo Dam di bagian hulu dilakukan untuk mengendalikan pergerakan sedimen (*debris flow*). Pengendalian aliran debris di bagian hulu dilakukan dengan membangun Sabo Dam yang berlokasi paling dekat dengan dinding kaldera gunung Bawakaraeng. Bangunan Sabo ini memiliki fungsi utama agar mampu mengantisipasi terjadinya erosi lateral dan tingginya aliran debris yang terjadi. Ada dua tipe struktur yang dibangun yaitu, kombinasi antara tipe beton, dan tipe dengan dinding baja ganda. Kedua tipe ini dipilih untuk menghadapi gerakan sedimen yang kuat di bagian hulu. (Udiana, 2011).

Pada bagian ini dibangun 7 (tujuh) unit Sabo Dam dengan initial SD 7-1 sampai dengan SD 7-7. Dari ketujuh seri sabo dam nampak bahwa SD 7-1 yang paling vital sehingga dirancang lebih kuat dan kokoh. Setelah beberapa kali mengalami kerusakan dan perbaikan, akhirnya pada bagian tengah (yang paling lemah) dipasang beton dengan menggunakan metode ISM (insitu site mixing) dan CSG (cemented sand and gravel). Adapun lokasi penempatan dari Sabo Dam disajikan pada gambar 8.

Gambar 8. Lokasi penempatan Sabo Dam Sungai Jeneberang Sumber : Penelitian Ahmad Rifqi Asrib – 2012

Sabo Dam SD 7-1 merupakan bangunan Sabo yang memiliki kapasitas tampung sedimen terbesar yaitu 453.000 m3. Adapun dari total volume sedimen yang dapat dikendalikan, SD 7-7 merupakan bangunan sabo yang paling mampu menahan sedimen sebesar 10.006.925 m3. Hal ini disebabkan letak SD 7-7 berada paling dekat dengan lokasi longsoran Kaldera sehingga memiliki konstruksi yang lebih kuat khususnya dalam menahan pergerakan sedimen longsoran sebelum berpindah ke bangunan sabo lainnya. (BBWS Jeneberang).

Berdasarkan hasil Penulis Rifqi Asrib (2012), Bahwa dari ketujuh bangunan pengendali SD dijeneberang. Menunjukkan Sabo Dam efektif mengendalikan volume sedimen sebesar 29.561.034 m3. Dari total tersebut yang dikendalikan secara langsung sebesar 1.299.500 m3 dan tidak langsung sebesar 28.261.533 m3. Pengendalian secara langsung adalah yang tertahan sebagai volume sedimen dan volume dari kapasitas tamping sedimen pada bangunan Sabo Dam, adapun untuk pengendalian

secara tidak langsung adalah volume sedimen yang tidak stabil dan volume tampungan sungai (*river bank*) pada bangunan Sabo Dam. Secara jelas kapasitas untuk masing-masing Bangunan Pengendali Sabo Dam disajikan pada Tabel 4.

Tabel 4. Kapasitas bangunan pengendali Sabo Dam di Upper Stream

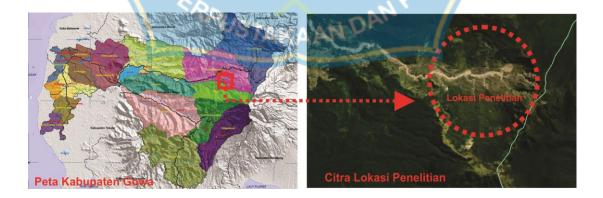
Sabo Dam	Dimensi Tinggi Dam Utama (m)		Vol Sedimen (m ³)	Kapasitas Tampung Sedimen (m ³)	River Bank (m ³)	Endapan Tidak Stabil (m³)	Total Vol Sedimen yang Dikendalikan (m³)
SD 7-7	10,0	163,0	15.700	31.900	115.000	9.844.325	10.006.925
SD 7-6	10.0	102,8	32.900	45.700	132.500	7.443.775	7.654.875
SD 7-5	14,5	81,0	50.000	76.300	96.000	4.634.350	4.856.650
SD 7-4	10,0	153,0	44.500	68.500	66.000	2.441.925	2.620.925
SD 7-3	12,5	121,0	51.000	102.000	70.000	1.886.238	2.109.238
SD 7-2	12,5	97,0	34.000	68.000	70.000	912.936	1.084.936
SD 7-1	12.0	94.5	226.000	453.000	422.000	126.485	1.227.485
	Total		454.100	845.400	971.500	27.290.033	29.561.034

Sumber: Hasil Penelitian Ahmad Rifqi Asrib – 2012 (Institut Pertanian Bogor)

PERPUSTAKAAN DAN PER

BAB III

METODE PENELITIAN


A. Lokasi dan Waktu Penelitian

1. Lokasi penelitian

Lokasi penelitian terletak di wilayah Sungai hulu Jeneberang Desa Bawakaraeng Kabupaten Gowa. Adapun Lokasi studi tepatnya 75-80 Km dari Ibu Kota Provinsi Sulawesi selatan,

Secara geografis sungai jeneberang 95% berada di wilayah Kabupaten Gowa, dengan kisaran batas Geografis adalah

Dareah hulu sungai jeneberang secara administrasi terletak di Desa Bawakaraeng Kecamatan Tinggimoncong Kabupaten Gowa, untuk ke lokasi hilir sungai dapat dicapai dengan menggunakan mobil dan motor.

Gambar 9, peta lokasi penelitian Sabo Dam sungai jeneberang.

2. Waktu penelitian.

penelitian di lakukan dalam waktu Januari – Februari 2019. bulan pertama yaitu studi literatur, bulan kedua yaitu survei lokasi, pengambilan data dan penyusunan penelitian.

B. Pengambilan Data

Adapun data-data yang Penulis mengambil dalam penelitian ini adalah sebagai berikut :

1. Data Primer:

Data primer adalah data yang di peroleh secara langsung.

a) Data kecepatan aliran (V)

Untuk data kecepatan aliran (V) diambil dari aliran pada setiap titik atau patok yang telah di tentukan.

b) Data kedalaman aliran (H)

Untuk data kedalaman aliran (H) diambil dari setiap patok yang telah ditemtukan.

2. Data Sekunder

Data sekunder adalah data yang di peroleh dari pihak lain atau perantara, data tersebut adalah data dimensi bangunan Sabo Dam hulu sungai jeneberang, yang dimana data tersebut berasal dari Balai Besar Wilayah Sungai Pompengan Jeneberang.

C. Variabel Penelitian

Adapun variabel yang digunakan dalam penelitian adalah:

- Variabel bebas adalah Variabel yang dipengaruhi variabel lain diantaranya adalah Debit Aliran (Q), Debit Sedimen Melayang (Qsm), Debit Sedimen Dasar (Qsd), Volume Tampungan Sedimen (Vol).
- Variabelterikat adalah variabel yang mempengaruhi variabel lain diantaranya adalah Kecepatan Aliran (V), Luas Penampang (A) dan kedalaman Aliran (h).

D. Alat dan bahan

Secara umum, alat dan bahan yang digunakan dalam penunjang penelitian ini terdiri dari:

1. Alat

- 1) Meter
- 2) Kamera digital untuk pengambilan dokumentasi
- 3) Laptop untuk mengolah data
- 4) Alat tulis dan tabel data
- 5) Currentmeter
- 6) Stopwatch
- 7) Plastik / karung
- 8) Skop kecil
- 9) Saringan

2. Bahan

1) Sedimen Universal

E. Prosedur penelitian

Untuk mengukur kecepatan aliran dengan menggunakan current meter, yaitu sebagai berikut :

- Langkah pertama yang dilakukan adalah mengukur Kecepatan
 Aliran sungai, lebar sungai, dan kedalaman aliran.
- Hitung kedalaman sungai dengan menggunakan tongkat berskala.
- 3. Tempatkan alat ukur current meter pada kedalaman tertentu sesuai kedalaman sungai.
- 4. Dengan menggunakan stopwacth hitunglah kecepatan sungai melalui angka yang ditampilkan dalam monitor current meter. Lama waktu pencatatan adalah 1 menit.
- 5. Ulangi langkah hingga tiga kali pengukuran
- 6. Lakukan pengukuran pada segmen yaitu segmen dua dan tiga.
- 7. Hitung kecepatan aliran sungai rata-rata pada setiap segmen pengukuran dengan cara menjumlahkan nilai pengamatannya.
- 8. Hitung debit sungai dengan mengalihkan luas penampang sungai dengan kecepatan rata-rata aliran sungai.

E. Tahapan Penelitian

1. Persiapan

Adapun kegiatan persiapan yang kami lakukan dalam penelitian ini adalah melakukan kegiatan survey lokasi penelitian dan mempersiapkan data-data perancangan maupun alat dan bahan yang dibutuhkan.

F. Metode Analisis

Untuk tiap-tiap data dapat digunakan sebagai berikut :

1) Untuk mengetahui karakteristik sedimen, di lakukan pengujian analisa saringan dan kadar lumpur. Cs = $\frac{Ws}{Wtotal}$

Ws (Sampel 1) = 0,0125 gram Wtotal (Sampel 1) = 99,9878 gram

Ws (Sampel 2) = 0.0125 gram Wtotal (Sampel 2) = 100 gram

2) Penentuan luas penampang basah

 $A = b \times h$

3) Penentuan kecepatan aliran menggunakan current meter PC. No. 2-85-11

N < 0.50 maka V = 0.4533 N + 0.0106 (m/det)

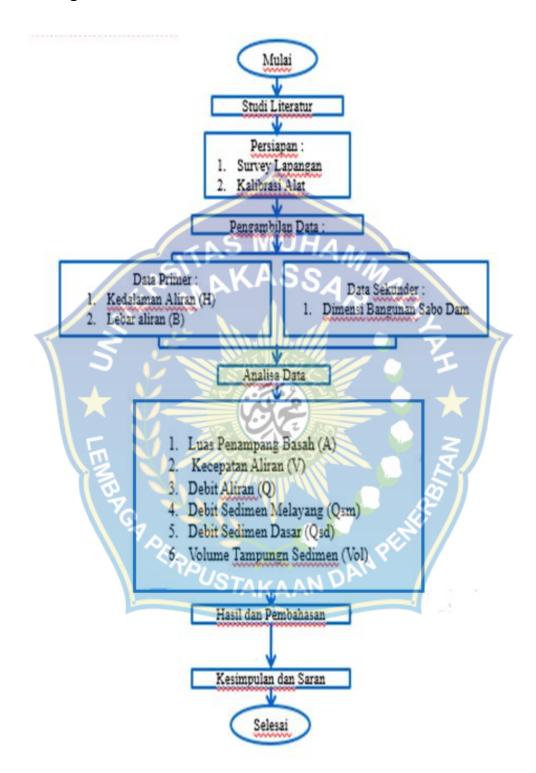
N > 0.50 maka V = 0.4905 N + 0.008 (m/det)

1) Debit aliran menggunakan rumus

 $Q = V \times A$

2) Penentuan laju sedimentasi menggunakan persamaan Suripin (2002)

 $Qsm = 0.0864 \times Cs \times Qw$


 $Qsd = 65\% \times Qsm$

3) Volume tampungan pada Sabo Dam, menggunakan rumus :

 $LA = \frac{1}{2} x a x t$

 $Vol = LA \times Tprisma$

G. Bagan Alur Penelitian

Gambar 10. Bagan AlurPenelitian

BAB IV

HASIL DAN PEMBAHASAN

A. Perhitungan Karekteristik Sedimen

Sedimentasi di bangunan Sabo DAM menjadi luar biasa karena dalam satu periode hujan tampungan volume bangunan Sabo DAM terisi penuh. Laju sedimentasi di Sabo DAM dapat dihitung berdasarkan volume sedimen dari hasil pengukuran.

Pengujian ini menggunakan sampel yang telah diambil langsung dari lokasi penelitian pada bangunan Sabo DAM 7.6 di Hulu Sungai Jeneberang, kemudian dilakukan pengujian Laboratorium di Balai Besar Laboratorium Kesehatan Makassar, untuk mengklasifikasi jenis sedimen pada sampel tersebut.

1. Perhitungan diameter sedimen

Penentuan diameter sedimen, dalam hal ini adalah melalui percobaan analisa saringan yang dilakukan di laboratorium, sehingga dari hasil percobaan tersebut dapat kita peroleh nilai diameter butiran atau koefisieng radasi dari sedimen tersebut.

Rumus:

Berat Tertahan =
$$\frac{Berat Komulatif (gram)}{Berat tanah (gram)} \times 100 \%$$

Lolos (%) = 100 – Berat tertahan

Tabel 5. Hasil Pengujian Analisa Saringan Bangunan Sabo Dam 7.6

Saringa	Diamete	BeratTertaha	BeratKomulati	Persen (%)		
Saringa n No.	r (mm)	n (gram)	f (gram)	Tertaha	Lolo	
II NO.	1 (111111)	ii (graiii)	i (grain)	n	S	
4	4,75	9	9	1,8	98,2	
10	2	13	22	4,4	95,6	
18	0,85	75	97	19,4	80,6	
40	0,425	146	243	48,6	51,4	
60	0,25	135	378	75,6	24,4	
100	0,15	57	435	87,0	13,0	
200	0,075	38	473	94,6	5,4	
Pan	-	27	500	100	0	

Menghitung Saringan No.50:

1. Saringan No.50 (D₅₀)

 $\frac{Saringan\ No.60-Saringan\ No.40}{Saringan\ No.60-50} = \frac{Diameter\ 60-Diameter\ 40}{Diameter\ 60-D_{50}}$

$$\frac{60-40}{60-50} = \frac{0,25-0,425}{0,25-D_{50}}$$

$$\frac{20}{10} = \frac{-0,106}{0,25 - D_{50}}$$

$$-1,06 = 5 - 20 D_{50}$$

$$20 \, D_{50} = 5 \, + 1,06$$

$$20 \, D_{50} = \, 6,\!06$$

$$D_{50} = \frac{6,06}{20}$$

$$D_{50} = 0.303 \text{ mm}$$

2. Saringan No. 50 (Lolos Saringan)

 $\frac{Saringan\ No.\ 60-Saringan\ No.\ 40}{Saringan\ No.\ 60-50}$

 $= \frac{Lolos \ saringan \ 60 - Lolos \ saringan \ 40}{Lolos \ saringan \ 60 - D_{50}}$

$$\frac{60-40}{60-50} = \frac{24,4-51,4}{24,4-D_{50}}$$

$$\frac{20}{10} = \frac{-27}{24,4 - D_{50}}$$

$$-270 = 488 - 20 D_{50}$$

$$20 D_{50} = 488 + 270$$

$$20 D_{50} = 758$$

$$D_{50} = \frac{758}{20}$$

$$D_{50} = 37,9 \%$$

Gambar 11. Grafik Analisa Saringan Bangunan Sabo Dam 7.6

Dari hasil perhitungan analisa saringan lolos saringan no. 4 (4,75 mm) adalah 98,2% sedangkan pada lolos saringan no. 50 (0,303)adalah 37,9 %.

2. Perhitungan kadar lumpur

Pengujian kadar lumpur di lakukan pada Balai Besar Laboratorium Kesehatan Makassar, dengan volume sampel 600 ml.

Tabel 6. Hasil Pengujian Kadar Lumpur Bangunan Sabo Dam 7.6

No	Tempat	Pengamb Tanggal	ilan Jam	Muka Air (m)	Jarak (m)	Volume Air (ml)	Kadar Lumpur		
	Hulu Sungai	13	14.07		1	600	123		
1	JeneberangBangunan	April	14.12	0.40	2		131		
	Sabo DAM 7.6	2019	14.18		3		122		
Jumlah									

Dari hasil laboratorium di peroleh hasil pengujian kadar lumpur, yang dimana kadar lumpur yang paling banyak berada di Sabo Dam 7.6 yaitu 376 mg dengan rata – rata 125,33 mg.

3. Perhitungan Debit Sedimen

1. Perhitungan luas penampang (A)

Luas penampang dapat di ketahui dengan rumus :

$$A = B \times H$$

Dimana:

A = Luas penampang basah (m^2)

B = Lebaraliran (m)

H = Kedalaman aliran (m)

a) Luas penampang pada Hulu Bangunan Sabo DAM 7.6

Tabel 7. Luas Penampang Hilir Bangunan Sabo Dam 7.6

No	Titik	Lebar (m)	Kedalaman (m)	Luas (m²)
1	Titik 1	1	0,50	0,500
2	Titik 2	1	0,55	0,550
3	Titik 3	1	0,42	0,420
4	Titik 4	1	0,25	0,250
5	Titik 5	0,75	0,19	0,143
Jum	lah	4,75	1,91	1,863
Rata	a-Rata	0.95	0,382	0,373

Nilai dari lebar dan kedalaman di peroleh dari lapangan, sedangkan nilai pada luas adalah perolehan dari perkalian dari lebar dan kedalaman.

$$A_{\text{titik 1}}$$
 = Lebar_{titik 1} x Kedalaman_{titik 1}
= 1 x 0,50

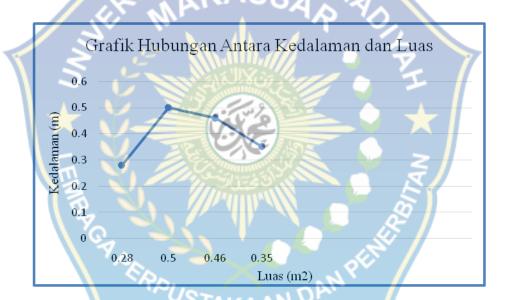
$$= 0.50 \text{ m}^2$$

Pada titik selanjutnya dapat dilakukan dengan cara yang sama, sehingga diperoleh luas penampang pada hilir bangunan Sabo DAM 7.6 yaitu1,863 m² dengan rata-rata 0,373 m².

Gambar 12. Grafik Hubungan Antara Kedalaman dan Luas

Penampang Hilir Bangunan Sabo Dam 7.6

Dari grafik hubungan antara kedalaman dan luas penampang hilir bangunan Sabo Dam 7.6 dapat di ketahui bahwa pada titik ke-2 dengan jarak titik 1 meter yaitu kedalaman 0,55 m mencapai luas penampang sebesar 0,55 m². Hal ini di akibatkan kurangnya sedimen pada aliran tersebut.


b) Luas penampang pada Hulu Bangunan Sabo DAM 7.6
 Tabel 8. Luas Penampang Hulu Bangunan Sabo Dam 7.6

No	Titik	Lebar (m)	Kedalaman (m)	Luas (m²)
1	Titik 1	1	0,28	0,28
2	Titik 2	1	0,50	0,50
3	Titik 3	1	0,46	0,46
4	Titik 4	1	0,35	0,35
Jum	ılah	4	1,59	1,59
Rata	a-Rata	1	0,398	0,398

Nilai dari lebar dan kedalaman di peroleh dari lapangan, sedangkan nilai pada luas adalah perolehan dari perkalian dari lebar dan kedalaman.

$$A_{titik 1}$$
 = Lebar_{titik 1} x Kedalaman_{titik 1}
= 1 x 0,28
= 0,28 m²

Pada titik selanjutnya dapat dilakukan dengan cara yang sama, sehingga diperoleh luas penampang pada hulu bangunan Sabo DAM 7.6 yaitu 1,59 m² dengan rata-rata 0,398 m².

Gambar 13. Grafik Hubungan Antara Kedalaman dan Luas Penampang Hulu Bangunan Sabo Dam 7.6

Dari grafik hubungan antara kedalaman dan luas penampang hilir bangunan Sabo Dam 7.6 dapat diketahui bahwa pada titik ke-2 dengan jarak titk 1 meter yaitu kedalaman 0,5 m mencapai luas penampang sebesar 0,5 m². Hal ini di akibatkan kurangnya sedimen pada aliran tersebut.

2. Perhitungan kecepatan (V)

Pada perhitungan kecepatan di lakukan dengan menggunakan current meter, dengan syarat rumus :

$$n < 0.50$$
 maka, $V = 0.4533$. $n + 0.0106$

$$n > 0.50$$
 maka, $V = 0.4905$. $n + 0.008$

$$n = r/t$$

Dimana:

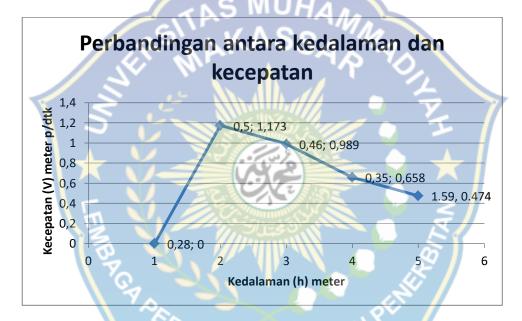
r = Putaran

t = Waktu (detik)

a) Kecepatan pada Hilir Bangunan Sabo DAM 7.6

Tabel 9. Kecepatan Hilir Bangunan Sabo Dam 7.6

No	Titik	Kedalaman (Jumlah	Waktu	N	Kecepatan
INO	TIUK	(m)	Putaran	(detik)	IN	(m/s)
1	Titik 1	0,28	0	0	0	0
2	Titik 2	0,50	95	40	2,375	1,173
3	Titik 3	0,46	80	40	2	0,989
4	Titik 4	0,35	53	40	1,325	0,658
5	Titik 5	1,59	38	40	0,950	0,474
Jun	nlah	2,49	266	160	6,65	3,294
Rata	a-Rata	0,311	53,2	32	1,33	0,659


Nilai dari jumlah putaran di peroleh dari lapangan, maka kecepatan dapat diperoleh dari rumus yang telah di tentukan :

$$n = \frac{r}{t}$$

$$n = \frac{95}{40} = 2,375$$

Nilai n = 2,375 maka, rumus kecepatan yang digunakan :

Pada titik selanjutnya dapat dilakukan dengan cara yang sama, sehingga diperoleh kecepatan pada hilir bangunan Sabo DAM 7.6 yaitu 3,294 m/s dengan rata-rata kecepatan 0,659

Gambar 14 Grafik Perbandingan antara kedalaman dan kecepatan di hilir dapat diketahui bahwa kecepatan tertiggi pada titik yaitu 1,173 m/s dengan kedalaman aliran yaitu 0,28. Sedangkan kecepatan yang terendah yaitu 0,474 dengan kedalaman yaitu 1,59

b) Kecepatan pada Hulu Bangunan Sabo DAM 7.6

Tabel 10. Kecepatan Hulu Bangunan Sabo Dam 7.6

No	Titik	Kedalaman (m)	JumlahPutaran	Waktu (detik)	N	Kecepatan (m/s)
1	Titik 1	0,28	41	40	1,025	0,511
2	Titik 2	0,50	83	40	2,075	1,026
3	Titik 3	0,46	96	40	2,4	1,185
4	Titik 4	0,35	73	40	1,825	0,903
Jum	lah	1,10	293	160	7,325	3,625
Rata	ı-Rata	0,157	73,25	40	1,831	0,906

Nilai dari jumlah putaran di peroleh dari lapangan, maka kecepatan dapat diperoleh dari rumus yang telah di tentukan :

$$n = \frac{r}{t}$$

$$n = \frac{41}{40} = 1,025$$

Nilai n = 1,025 maka, rumus kecepatan yang digunakan :

Pada titik selanjutnya dapat dilakukan dengan cara yang sama, sehingga di peroleh kecepatan pada hulu bangunan Sabo DAM 7.6 yaitu 3,625 m/s dengan rata-rata kecepatan 0,906 m/s.

Gambar 15 Grafik Perbandingan antara kedalaman dan kecepatan di hulu dapat diketahui bahwa kecepatan tertiggi pada titik yaitu 1,185 m/s dengan kedalaman aliran yaitu 0,46. Sedangkan kecepatan yang terendah yaitu 0,511 dengan kedalaman yaitu 0,28

3. Perhitungan debit air (Q)

Debit air (Q) merupakan hasil perkalian antara luas penampang (A) aliran/saluran dengan kecepatan (V) aliran air.

STAKAANDANP

$$Q = A \times V$$

Dimana:

Q = Debit air (m³/det)

A = Luas penampang (m^2)

V = Kecepatan (m/det)

a) Debit air pada Hulu Bangunan Sabo DAM 7.6

$$Q = A \times V$$

$$Q = 0.398 \times 0.906$$

$$Q = 0.360 \text{ m}^3/\text{s}$$

b) Debit air pada Hilir Bangunan Sabo DAM 7.6

$$Q = A \times V$$

$$Q = 0.373 \times 0.659$$

$$Q = 0.246 \text{ m}^3/\text{s}$$

Tabel 11. Rekapitulasi Bangunan Sabo Dam 7.6

No	Lokasi	Waktu (m)	Lebar (m)	Kedalaman (m²)	Luas (m³)	Kecepatan (m/s)	Debit (m³/s)
1	Hilir Bangunan Sabo Dam 7.6	160	0,95	0,382	0,373	0,659	0,246
2	Hulu Bangunan Sabo Dam 7.6	160	1	0,398	0,398	0,906	0,360

4. Perhitungan dengan penelitian laboratorium

(Cs), yang di ketahui pada persamaan 2 adalah sebagai berikut :

$$Cs = \frac{Ws}{Wtotal}$$

Ws (Sampel 1) = 0,0125 gram Wtotal (Sampel 1) = 99,9878 gram

Ws (Sampel 2) = 0.0125 gram Wtotal (Sampel 2) = 100 gram

Sedimen Nilai Cs dapat diketahui sebagai berikut :

Untuk Cs1
$$= \frac{0.0125 \ gram}{99.9878 \ gram}$$
$$= 0.000125$$

Untuk Cs2 =
$$\frac{0.0125 \ gram}{100 \ gram}$$

= 0.000125
Jadi, Cs = $\frac{0.000125 + 0.000125}{2}$ = 0.000125
= 1.25 x 10⁻⁴

5. Perhitungan Volume Tampungan

Berdasarkan data, BBWS Pompengan Jeneberang menghitung volume tampungan Sabo DAM, berdasarkan garis kontur, di mulai dari pada bangunan Sabo DAM 7.6 yang menjadi tampungan air pada kondisi normal maupun banjir. Dengan garis kontur yang berupa polygon tertutup, dengan Software Cad dapat dihitung luasya. Bila ada pulau atau gundukan maka luasnya di kurangi dengan luas dari kontur yang elevasinya sama dari pulau atau gundukan tersebut.

Tabel 12. Kapasitas bangunan pengendali Sabo Dam di Upper Stream

Sabo Dam	Dimensi Tinggi Dam Utama (m)	(C)	Vol Sedimen (m ³)	Kapasitas Tampung Sedimen (m ³)	River Bank (m ³)	Endapan Tidak Stabil (m ³)	Total Vol Sedimen yang Dikendalikan (m³)
SD 7-7	10,0	163,0	15.700	31.900	115.000	9.844.325	10.006.925
SD 7-6	10.0	102,8	32.900	45.700	132.500	7.443.775	7.654.875
SD 7-5	14,5	81,0	50.000	76.300	96.000	4.634.350	4.856.650
SD 7-4	10,0	153,0	44.500	68.500	66.000	2.441.925	2.620.925
SD 7-3	12,5	121,0	51.000	102.000	70.000	1.886.238	2.109.238
SD 7-2	12,5	97,0	34.000	68.000	70.000	912.936	1.084.936
SD 7-1	12.0	94.5	226.000	453.000	422.000	126.485	1.227.485
	Total		454.100	845.400	971.500	27.290.033	29.561.034

Berdasar daftar elevasi dan luas dapat dihitung volume ruang dengan rumus prisma segitiga sebagai berikut.

$$LA = \frac{1}{2} \times a \times t$$

$$V = LA \times T_{Prisma}$$

Dimana:

LA = Luas
$$(m^2)$$

$$a = Alas (m)$$

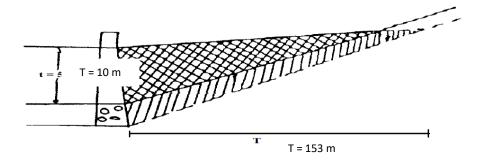
TPrisma = Panjang (m)

$$Vol = Volume (m3)$$

a) Debit air pada Bangunan Sabo DAM 7.6

$$LA = \frac{1}{2} \times a \times t$$

$$LA = \frac{1}{2} \times 52,5 \times 10$$


$$LA = 262,5 \text{ m}^2$$

Volume tampungan sedimen pada bangunan Sabo DAM 7.6 adalah :

$$V = LA \times T_{Prisma}$$

$$V = 262,5 \times 153$$

$$V = 40.162,5 \, m^3$$

6. Perhitungan Laju Sedimentasi Menggunakan Analisis Berdasarkan Suripin

Perhitungan besarnya debit sedimen harian menurut Suripin (2002, terlampir) dihitung dengan rumus :

Dimana:

Qsm = Debit sedimen melayang (ton/tahun)

Cs = Konsentrasi sedimen melayang (mg/liter)

Qw = Debit aliran (m³/s)

a) Debit Sedimen pada Hulu Bangunan Sabo DAM 7.6

$$Cs = 1,25 \cdot 10^{-4} \text{ t/m}^3$$

$$Qw = 0.346$$

 $Qsm = 0.0864 \times Cs \times Qw$

$$= 0.0864 \times (1.25 \times 10^{-4}) \times 0.346$$

$$= 3,7368 \times 10^{-6} \times 60 \times 60 \times 24 \times 365$$

= 117,8437248 ton/tahun

 $Qsd = 65\% \times Qs$

 $= 65\% \times 117,8437248$

= 76,59842112 ton/tahun

Qtotal = Qsm + Qsd

= 117,8437248 + 76,59842112

= 194,44214592 ton/tahun

Dimana:

Qsm = Debit sedimen melayang (ton/tahun)

Cs = Konsentrasi sedimen melayang (mg/liter)

Qw = Debit aliran (m^3/s)

b) Debit Sedimen pada Hilir Bangunan Sabo DAM 7.6

$$Cs = 1.25 \cdot 10^{-4} \text{ t/m}^3$$

$$Qw = 0.246$$

$$Qsm = 0.0864 \times Cs \times Qw$$

$$= 0.0864 \times (1.25 \times 10^{-4}) \times 0.246$$

$$= 2,6568 \times 10^{-6} \times 60 \times 60 \times 24 \times 365$$

= 83,7848448 ton/tahun

$$Qsd = 65\% \times Qs$$

= 54,46014912 ton/tahun

= 138,24499392 ton/tahun

Yang Mengendap = Q Hulu - Q Hilir

$$= 194,44214592 - 138,24499392$$

= 56,197152528 ton/thn

Jika berat volume (γ) sedimen = 1,68 t/m³

Volume yang mengendap =
$$\frac{56,197152528 \ gram}{1,68 \ gram}$$
 = 33,45 m³/thn

Durasi daya tampun=
$$\frac{V}{E} = \frac{40.162,5 \text{ m}3}{33,45 \text{m}3/\text{thn}} = 1.200,67 \text{ thn.}$$

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan hasil dan pembahasan pada bab sebelumnya, maka dapat ditarik kesimpulan bahwa, daya volume tampung Sabo Dam 7.6 sebesar 40.162,5 m³, dan Laju Sedimen sebesar 33,45 m³/tahun. Di hasilkan Durasi pengisian Sabo Dam 7.6 hingga penuh di butuhkan waktu selama 1.200,67 tahun. Hal ini tidak mungkin terjadi karena fakta di lapangan ternyata Sabo Dam 7.6 membutuhkan waktu yang kurang dari 5 tahun untuk penuh sesuai kapasitas tampungan yang ada.

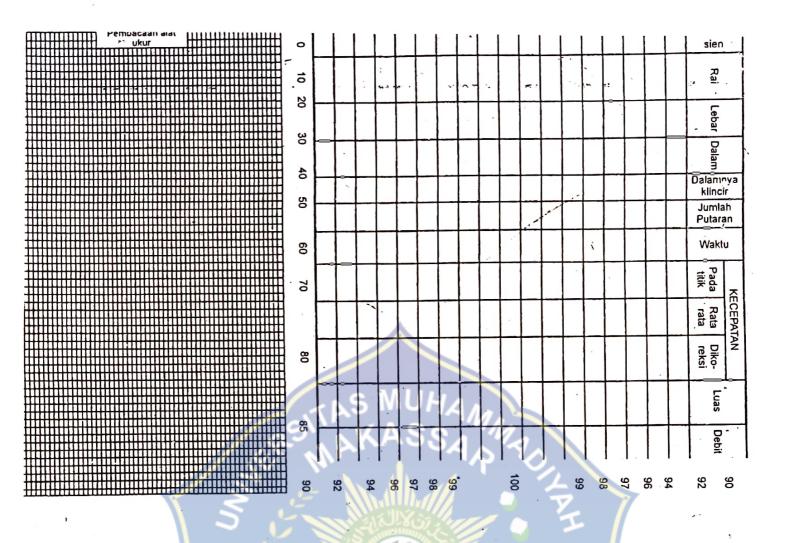
Hal ini menunjukkan bahwa terjadi kesalahan di dalam penelitian ini (negative finding research). Ini besar kemungkinan di akibatkan kesalahan waktu pengambilan sampel dan waktu pengujian laboratorium.

B. Saran

- Perlu penkajian lebih lanjut untuk perhitungan rasional sebelum pengambilan sampel
- 2. Titik pengambilan sampel harus akurat baik jumlah maupun letak titiknya
- 3. Perlu dilakukan modifikasi alat yang lebih baik untuk pengambilan sampel sedimen suspensi supaya data yang didapat lebih akurat
- 4. Untuk bangunan Sabo Dam yang ada di Hulu Sungai Jeneberang perlu dilakukan pemeliharaan bangunan pengendalian sedimen secara

- berkala karena terdapatnya kerusakan-kerusakan sehingga membuat sedimen dapat sampai ke daerah waduk Bili-bili.
- 5. Untuk Perpustakaan Jurusan Sipil dan Perpustakaan Umum dan fakultas Teknik Universirtas Muhammadiyah Makassar sebaiknya menyiapkan dan melengkapi buku-buku sipil tentang sedimen untuk menunjang proses belajar mengajar dan penyusunan tugas akhir.
- 6. Agar kiranya instansi-instansi terkait memberikan dan melengkapi data-data yang berhubungan dengan keadaan Sungai Jeneberang.

DAFTAR PUSTAKA


- BabII Tinjauan Pustaka Bangunan Sabo Dam. http://repository.umy.ac.id/bitstream/handle/123456789/7682/bab%20ii.pdf?sequence=3&isAllowed (Diunduh tanggal 17 Desember 2018, 21.05)
- Humaira, Ayu marlina,2014. Analisis Hidrolika Banguanan Krib Permeabel Pada Saluran Tanah (Uji Model Laboratorium). (Jurnal). Universitas Sriwijaya Indonesia
- Massinai M.A, 2011. Peranan Tektonik Dalam Berkontribusi Membentuk Geomorfologi Wilayah DAS Jeneberang. Program Pasca Sarjana UNPAD: Bandung
- Suripin. 2004. Sistem Drainase Yang Berkelanjutan. Penerbit Andi Offset, Yogyakarta
- Asdak, 1995. *Hidrologi dan Pengelolaan Daerah Aliran Sungai*. Yogyakarta : Gadjah Mada University Press. A
- Asdak Chay, 2004. *Hidrologi dan Pengelolahan Daerah Aliran Sungai*. Universitas Gaja Mada, Yogyakarta.
- Arsyak, 2006. Konservasi Tanah dan Air. Bandung: Penerbit IPB (IPB Pres).
- Chow, 1992, Hidrolika Saluran Terbuka. Penerbit Erlangga, Jakarta,
- Arsyad, 2006. Konservasi Tanah dan Air. Edisi kedua. IPB Press. Bogor...
- Chow, 1992, Hidrolika Saluran Terbuka. Penerbit Erlangga, Jakarta, 1992.
- Robert. J Kodatie, 2009 Hidrolika Terapan Aliran Pada Saluran Terbuka Dan Pipa penerbit Andi
- Asdak, Chay. 2014. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta.
- Arsyad Sitanala, (2010). *Konservasi Tanah dan Air. Edisi Kedua*, IPB Press. Bogor
- Suripin. 2002 Pengelolaan Sumber Daya Tanah dan Air. Andi. Yogyakarta

- Asdak, Chay. 2007. *Hidrologi dan Pengelolaan Daerah Aliran Sungai*. Gajah Mada University Press. Yogyakarta.
- (Sumber: swwtc.wsu.edu, 2000)
- Arsyad, .2010. Konservasi Tanah dan Air. Edisi Kedua. IPB Press, Bogor.
- Komariah, 2014, Analisis Sediment Yield Pada Area Waduk Sermo Dengan Metode Musle. Yogyakarta.
- Siswanto. (2007). Kesehatan Mental; Konsep Cakupan dan Perkembangannya. Yogyakarta: penerbit C.V ANDI OFFSET
- Abdul Ghani. N.A.A., Othman. N., Baharudin. M.K.H, 2012, Study on Characteristics of Sediment and Sedimentation Rate at Sungai Lembing, Kuantan, Pahang, Precedia Engineering of Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3 -Civil and Chemical Engineering.
- Purnawan, Syahrul., Setiawan, Ichsan., Marwantim, 2012, Studi sebaran sedimen berdasarkan ukuran butir di perairan Kuala Gigieng, Kabupaten Aceh Besar, Provinsi Aceh, Jurnal Depik Vol 1 Nomor 1, Hal31-36.
- Garde, R.J., Raju, K.G.R., 1985, *Mechanics of Sediment Transportation and Alluvial Stream Problems*, Second Edition, Wiley Eastern Limited, Roorkee, India.
- Syamsudin Aris, 2016. Pengukuran Laju Sedimentasipada Ekosistem Terumbu Karangdi Perairan Gambesi Kota Ternate Selatan (Jurnal). Universitas Khairun Ternate. Ternate
- Supangat Agung, 2014. Monev Tata Air DAS "Perhitungan Sedimen". Balai Penelitian Teknologi Kehutakan Pengelolaan DAS. Surakarta
- Subarkah 2005, Sistem Pengandalian Banjir dan Debris Program Megister Pengelolaan Bencana Alam (MPBA). Universitas Gadjah Mada. Yogyakarta. Sughono, 1995. *Buku Teknik Sipil*. Penerbit Nova. Bandung.

- Udiana, 2011. Model Perencanaan Bangunan Sabo Untuk Pengendalian Aliran Debris "Debris flow" (Jurnal). Universitas Nusa Cendana. Nusa Tenggara Timur
- Cahyono Joko, 2012. *Penanggulangan Daya Rusak Aliran Debris*. BukuCatatan Joko. Yogyakarta
- Fitra Fahri Syawal, 2016. Studi Keandalan Tampungan Sedimen Sabo Dam Sehati Pulau Seram Maluku Tengah (Jurnal). Universitas Hasanuddin. Makassar
- Karim Nenny, 2010. *Bahan Ajar Sediment Transport*. Universitas Muhammadiyah Makassar. Makassar
- Nursa'ban Muhammad, 2006. Pengendalian Erosi Tanah sebagai Upaya Melestarikan Kemampuan Fungsi Lingkungan (Jurnal). Universitas Negeri Yogyakarta. Yogyakarta
- Rifqi Ahmad, 2012. Model Pengendalian Sedimentasi Waduk Akibat Erosi Lahan Dan Longsoran Di Waduk Bili-Bili Sulawesi Selatan (Jurnal). InstitutPertanian Bogor. Bogor
- Satria Andi Sena, 2016. Evaluasi Kapasitas Sabo Dam dalam Usaha Mitigasi Bencana Sedimen Merapi "StudiKasus : Sabo Dam PU-C Seloiring, Kali Putih, Merap" (Skripsi). Universitas Muhammadiyah Yogyakarta. Yogyakarta
- Udiana, 2011. Model Perencanaan Bangunan Sabo Untuk Pengendalian Aliran Debris "Debris flow" (Jurnal). Universitas Nusa Cendana. Nusa Tenggara Timur

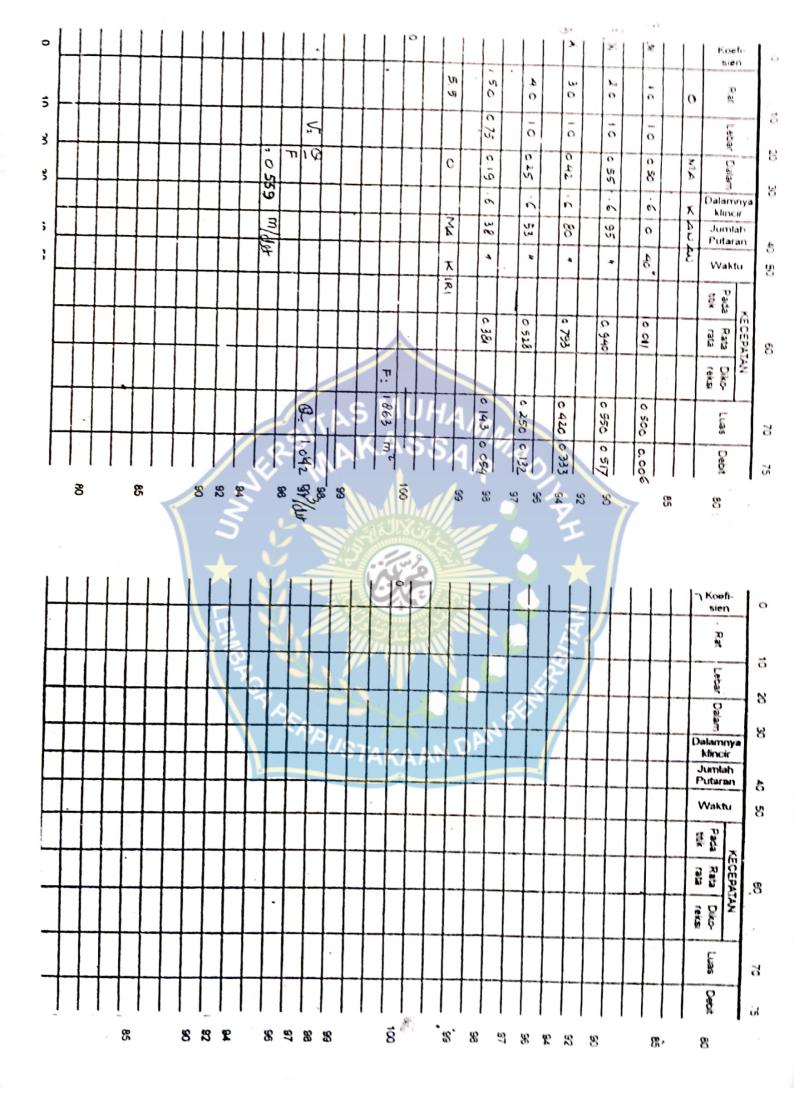
Undang – undang Republik Indonesia, 1991.LN 1991/44; TLN No. 3445. Peraturan Perintah No. 35 tahun 1991. Sungai hppt://sda.pu.go.id:183/panduan/unduh – referensi – peraturan /PP_35_1991. pdf (diakses tanggal 05-januari-1019

KEMENTERIAN PEKERJAAN UMUM DIREKTORAT JENDERAL SUMBER DAYA AIR

Kerjasama BBWS/BWS - DINAS PSDA Prop. Sul Selatan - Baiat PSDA KEGIATAN : PENGELOLAAN HIDROLOGI

PENGUKURAN ALIRAN

Ň _o .	DA	3
Peng. 5		TO THE PARTY OF TH

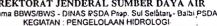

PEMBACAAN MUKAAIR	Alat digunakan sejak tahun ————————————————————————————————————	0 > 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 <	Jenis alat No. alat	Cara 0.6 Jum. Verl. 5 Perub. M.a cm.w	ebar 5.5 M Luas 1.863 M² Kecar	APRIL 2018	S JENEBERANG HOLD	
Waktu pularan sesudah pengk. detik	Kalibrasi terakhir igi.———————————————————————————————————	n > 0.50 ; V = 0.4905 n + 0.008 M/det	0.4533 n+ 0.0106 M/det	Perub M.a cm.waktu menit	Lebar 5.5 M Luas 1.863 M2 Kecap 0.559 M/det M.a. 0.50 M Debit 1.042 Madet	חבל	LU Tempat ; SABO DAM 7.6 CHILIR)	Dengan Curren Meter
			Sc	anı	nec	d t	у (Ca

					7				=11	\sim	K a	7				
No. pielskal: tetap / berubah naik / turun tinggi lumpur dalam sumur Kondisi Lokasi: a. Aliran: laminer, turbulen, pengaruh l b. Kemiringan MA BATU m / c. Material dasar Control	Keadaan Saat Mengukur:	M.a. Rata-rata	Koreksi	Rata-rata		Selesal	14.10	100			mulai	14.97		Waktu	" PEM	
er, turbu MAar	ngukur		3											Grafik	BACAA	
Jr	Suhu udara			X		94	٠,	1 9				3	7	Disumur	PEMBACAAN MUKA AIR	Q
m / c	dara ———	0.50	1	0.50			0.50				5 //	0.50		Sungai		
m, sejak tanggar dibilas ? m. bentuk penampang BATU material tebing m, dihilir stasiun, material control	°C suhu air°C		m, dihilir / hulu jembatan (pilar)	m, dihilir / hulu stesiun MERCO	ar P					-	Winch cable.	el; ha	Peralatan pengukuran : tongkat penguga nemberatka Tag line: slop watch; perahu;	moving boat; dan jembatan.	Waktu putaran sesedah pengk.————————————————————————————————————	detik

e. Tinggi aliran nol

_ m/aliran melimpah pada M.a.

Catatan:



-			· ·	ā			к	ECEPAT	AN	· .		
sien	Rai	Lebar ,	Dalam	Dalamn's klinc.r	Jumlah Putaran	Waktu	Pada titik	Rata rata	Diko- reksi	Luas	Debit	90 92
_					•							94
				_							 	96
												97
_	_=			_								98
_	- :						-		-		-	99
_		-		-	_		-				1	7
	i	-		-	+		-			9		
	· ·	-	-	_	,	_	_		1		1	100
			-	-	-		1		\checkmark		77	
		-		-					-	·	-	
_	+	-	-	-	-						_	99
-	-	-	 	-	-	-					_	98
		-	 	\vdash	-	1		-				97
	1	 	 	\vdash	-							96
_	 	_	 	-				1				94
_	 	-	<u> </u>	7	1		1	1	W			
				\vdash	_	1					B	92
0	10 2	20 3	0 4	0 5	50	60	70	Π	80	8	35	90
\blacksquare												
				Ш								
- ukur												
UKR.												
3												
Ė												
				₩				Ш				
										\blacksquare		
$\pm \pm$				##		##	###	###	+++++	++++	###	###

e. Tinggi aliran nol Calatan :

KEMENTERIAN PEKERJAAN UMUM DIREKTORAT JENDERAL SUMBER DAYA AIR Kerjasama BBWS/BWS - DINAS PSDA Prap. Sul Selatan - Balbi PSDA KEGIATAN : PENGELOLAAN HIDROLOGI

PENGUKURAN ALIRAN

			C	engan Curren	Meter			
Nama Sungai	S.JENE	BERANG	HULU	Tempa Nama Petugas 765 M/det M	SABO	DAM	7.6 (H	ULU
Tanagal 13	APRIL	201	9	Nama Petunas	Nurhatif	<u>ah Amir</u>	n , Farido	a Ru
Lebar 5,0	_M Luas_	1. 590 M2	Kecan O	765 M/det M	a. 0.30	_ M Debit	1.216	-Made
CCOU	- III Edds-						15	

Jenis alat CUr Rumus kecepata	reut M n n≤—	o. So	at $\frac{86.05}{0.45}$	No. kincir 2. 05. 11 No o o o o o o o o o o o o o o o o o o
Alat digunakan s			V =	— Kalibrasi terakhir tgl.
PEN	MBACAAI	N MUKA AIR	2	Waktu putaran sebelum pengk. detik Waktu putaran sesudah pengk. detik Metode Pengukuran; merawas; perahu, cableway;
Waktu	Grafik	Disumur	Sungai	moving boat; dan jembatan.
11//	T.		12	Peralatan pengukuran : tongkat penduga pemberat —— kg. Tag line; stop watch; perahu;
14.23			0 30	sounding reel; handlines; Sonic sounder; cable-car
mulai				Wi <mark>n</mark> ch cable.
SALE			- //	
9				
14.38 selesa			0.36]
selesa			1	V/
3P 3			T.	Tempat Pengukuran :
Rata-rata			0.30	m, dihilir / hulu stasiun MERCU
Koreksi			m	m, dihilir / hulu jembatan (pilar)
M.a. Rata-rata			0 30	m, ornur / hold jembatan (pilat)
Keadaan Saat M	W		udara	°C suhu air °C m, sejak tanggal
tinggi lumpur da	lam sumu		m / dib	ilas ? —————
Kondisi Lokasi :				
a. Aliran : lami	ner, turbu	len, pengari	h back water	heatuk papampana
b. Kemiringan c. Material da:	sar	SATU III	m:	bentuk penampang (ATV)

. m/aliran melimpah pada M.a.

	Rat	Lebar	Dalan	mnya	hah	Ktc		KECEPA						÷ =				E L		50	K	ECEPAT	TAN	70	75
L		2000.	Dalan	Data			Pada titik		Diko- reksi	Luas	Debit	80		- Koefi	- Rat	Lebar	Dalam	alame	Jumba Putara	Waktu	Pada titik	_	Diko- reksi	Luas	Debit
L	6		MA		KAN	AN					_			<u>'</u>				-	-				TERS		
L		-	<u> </u>	1	_						_	85				-		-							_
_	10	1.0	0.28	.6	41	40"		0.410		0.280	0 115							-			-				-
		-	-	-	_								-					_	\vdash			_			-
_	2.0	10	0.50	.6	83	*	-	0.822		0.500	0411	90													_
_	30	-	-	 _ -								52	MU	_	Α.								-		
_		10	0.46	.6	96	n		0.950	-	0.460	0 437	94			71/	11 .	-								
-	40	10	275	-	71	-	-			5		96	A C			11/	7								
-	-	,,,	0.35	.6	73	^		0.724	, 4	0.350	0 253	97	770	-	A		4								
,	5.0		0	MA		HIR!			Q.	- //	777	00	_			7		0)							
_	•	-		-		(-161						98	A A -	1	4										_
_					-		-			_		99	All A	4	/										
					-	-	-					III		4	4	_									
						1		-	F:		m	100	ين لا الله	-	7/					-			7		
						1	-			1.330		100	0	+		4		_	_	_					
									-				100	9			-		_	4.					
							LA.	V.				2 99		+	-	-	-	-	-	-					
_		V=	<u>&</u>							9: 1.2	16 m	wast .		6	301-3			+	-+					<u> </u>	
_	_		F								1	97	2000 minus	+		-		-	-	-					
_		,	0.769	m	du							96	ت برات		2			-			/	-		-	·
_		-		_	\dashv		11	5				///	Zarrana	11	1		7		-		-		·		
_				_	\rightarrow			O		347		94	ها ا اله		V			-	0		-				
_		-		-	\rightarrow	_	- 11	7				92						75		77				-	
_				-	-	_			<u> </u>			90			E.					7					-
_				\dashv	\dashv	_			Y_A								1	7							
_	\dashv			_	\dashv		_	7/7		SA							7		1						4
-		\rightarrow		-	-	-	_			KAY.	٠,,	85	-		0	777			7						
-	-+			\dashv	\dashv			-	1		4	277	4κΔΔ	V	1							_			
-				-	\rightarrow								444						1						
_							- 1					80							_	-					-

KEMENTERIAN KESEHATAN RI DIREKTORAT JENDERAL PELAYANAN KESEHATAN

BALAI BESAR LABORATORIUM KESEHATAN MAKASSAR

Jl. Perintis Kemerdekaan KM.11 Tamalanrea Makassar 90245

LAPORAN HASIL UJI

Report of Analysis No: 19008772 / LHU / BBLK-MKS / IV / 2019

Nama Customer

: RUSLI

Customer Name

Alamat

Unismuh Fak. Teknik Sipil Pengairan

Address

: Air Sungai

Jenis Sampel

Type of Sample (S)

No. Sampel

: 19008772 (S. Jeneberang Hulu - SABO DAM 7,6 Hilir, Jam 14.07)

No. Sample

Tanggal Penerimaan

: 25 April 2019

Received Date

: April 25, 2019

DAFTAR PERSYARATAN KUALITAS AIR SESUAI PERATURAN GUBERNUR SULSEL NO. 69 TAHUN 2010

Requirement List of Water Quality by South Sulawesi Gubernur Regulation No. 69/2010

No No	Parameter Parameters								
		2		Kelas I	Keias II	Kelas III	Kelas IV	7	
1	Kadar Lumpur	mg/l	123	50 23	55	400	400	Gravimetrik	

Catalan : 1 Hasīl uji ini berlaku untuk sampel yang diuji

Note

The analytical result are only valid for the tested sample

2 Laporan hasil uji ini terdiri dari 1 halaman The report of analysis consists of 1 page

3 Laporan hasil uji ini tidak boleh digandakan kecuali secara lengkap dan seizin tertulis Laboratorium Penguji

Balai Besar Laboratorium Kesehatan Makassar

This report of analysis shall not be reproduced (copyed) except for the completed one and with theis written permission of the testing Laboratory Balai Besar Laboratorium Kesehatan Makassar

** Suhu Laboratorium

Makassar, 3 Mei 2019 Kepala Seksi Labkesmas,

DP/5.10.3/KL/BBLK - Mks; Rev 1; 15 Oktoberi 2012

Telp. 0411 586458-586457-586270 Fax 0411 586270 Surat Elektronik: bblk_makassar@yahoo.com bblk.mksr@gmail.com

KEMENTERIAN KESEHATAN RI

DIREKTORAT JENDERAL PELAYANAN KESEHATAN BALAI BESAR LABORATORIUM KESEHATAN MAKASSAR

Jl. Perintis Kemerdekaan KM.11 Tamalanrea Makassar 90245

LAPORAN HASIL UJI

Report of Analysis No: 19008773 / LHU / BBLK-MKS / IV / 2019

Nama Customer

: RUSLI

Customer Name

: Unismuh Fak. Teknik Sipil Pengairan

Alamat Address

Jenis Sampel

: Air Sungai

Type of Sample (S)

No. Sampel

: 19008773 (S. Jeneberang Hulu - SABO DAM 7,6 Hilir, Jam 14.12)

No. Sample

Tanggal Penerimaan

: 25 April 2019

Received Date

: April 25, 2019

DAFTAR PERSYARATAN KUALITAS AIR SESUAI PERATURAN GUBERNUR SULSEL NO. 69 TAHUN 2010

Requirement List of Water Quality by South Sulawesi Gubernur Regulation No. 69/2010

No No	Parameter Parameters	Satuan Units	Hasil Pemeriksaan Test Result	Batas	s Maksimur Maximu	Spesifikasi Metode Method Specification		
			, -	Kelas I	Kelas II	Kelas III	Kelas IV	_
. 1	Kadar Lumpur	mg/l	131	50 3	50	400	400	Gravimetrik

- Catatan : 1 Hasil uji ini berlaku untuk sampel yang diuji
 - The analytical result are only valid for the tested sample
 - 2 Laporan hasil uji ini terdiri dari 1 halaman The report of analysis consists of 1 page
 - 3 Laporan hasil uji inl tidak boleh digandakan kecuali secara lengkap dan seizin tertulis Laboratorium Penguji Balai Besar Laboratorium Kesehatan Makassar

This report of analysis shall not be reproduced (copyed) except for the completed one and with theis written permission of the testing Laboratory Balai Besar Laboratorium Kesehatan Makassar.

** Suhu Laboratorium

Makassar, 3 Mei 2019 Kepala Seksi Labkesmas,

ARRAZ KARTANEGARA, S.Fam

NIP: 197804212000121002

DP/5.10.3/KL/BBLK - Mks; Rev 1; 15 Oktoberi 2012

Telp. 0411 586458-586457-586270 Fax 0411 586270 Surat Elektronik : bblk_makassar@yahoo.com bblk.mksr@gmail.com

KEMENTERIAN KESEHATAN RI DIREKTORAT JENDERAL PELAYANAN KESEHATAN

BALAI BESAR LABORATORIUM KESEHATAN MAKASSAR

Jl. Perintis Kemerdekaan KM.11 Tamalanrea Makassar 90245

LAPORAN HASIL IJJI

Report of Analysis No: 19008774 / LHU / BBLK-MKS / IV / 2019

Nama Customer

: RUSLI

Customer Name

Unismuh Fak. Teknik Sipil Pengairan

Alamat Address

Jenis Sampel

Air Sungai

Type of Sample (S)

No. Sampel

19008774 (S. Jeneberang Hulu - SABO DAM 7,6 Hilir, Jam 14.18)

No. Sample

Tanggal Penerimaan

: 25 April 2019

Received Date

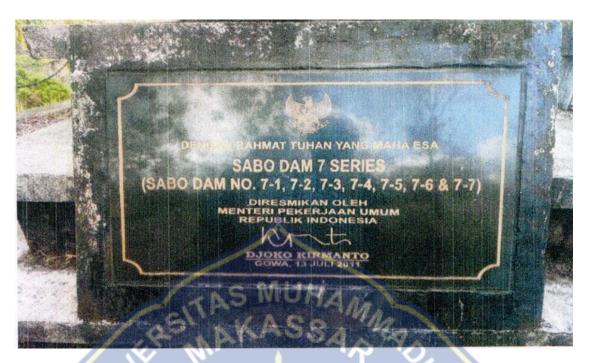
: April 25, 2019

DAFTAR PERSYARATAN KUALITAS AIR SESUAI PERATURAN GUBERNUR SULSEL NO. 69 TAHUN 2010

Requirement List of Water Quality by South Sulawesi Gubernur Regulation No. 69/2010

No No	Parameter Parameters	Satuan Units	Hasii Pemerikeaan Test Result	Bata	s Maksimu Maximu	Spesifikasi Metode Method Specification				
				Kelas I	Kelas II	Keras III	Kelas IV	4		
1	Kadar Lumpur	mg/l	122	50	50	400	400	Gravime t rik		

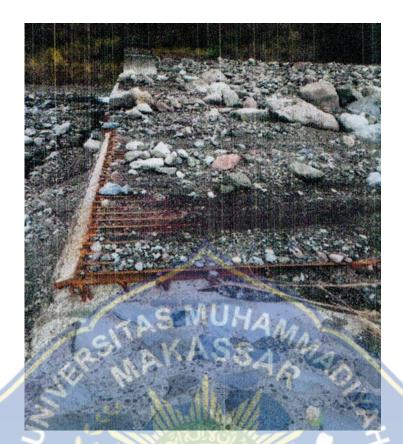
Catalan Note

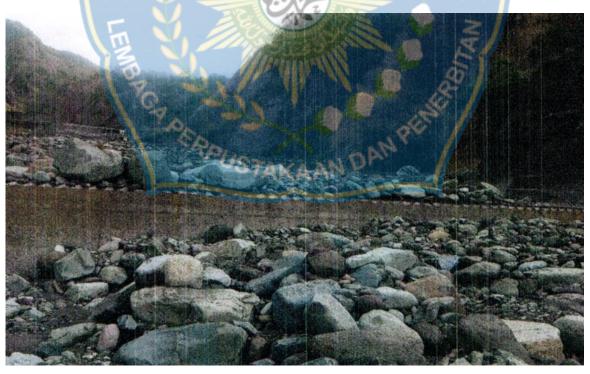

- 1 Hasil uji ini berlaku unluk sampel yang diuji
- The analytical result are only valid for the tested sample
- 2 Laporan hasil uji ini lerdiri dari 1 halaman
 - The report of analysis consists of 1 page
- 3 Laporan hasil uji ini tidak boleh digandakan kecuali secara lengkap dan selzin tertulis Laboratorium Penguji Balai Besar Laboratorium Kesehatan Makassar

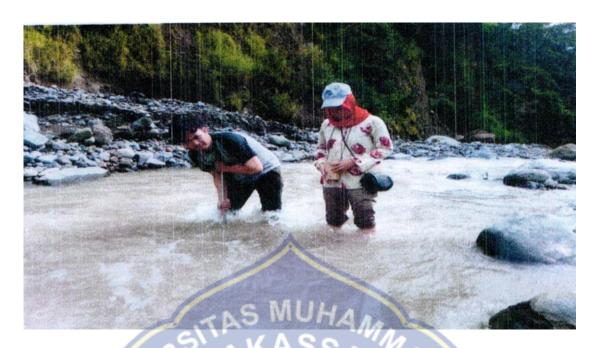
This report of analysis shall not be reproduced (copyed) except for the completed one and with theis written permission of the testing Laboratory Balai Beser Laboratorium Kasahatan Makassar.

Makassar, 3 Mei 2019 Kepala Seksi Labkesmas,

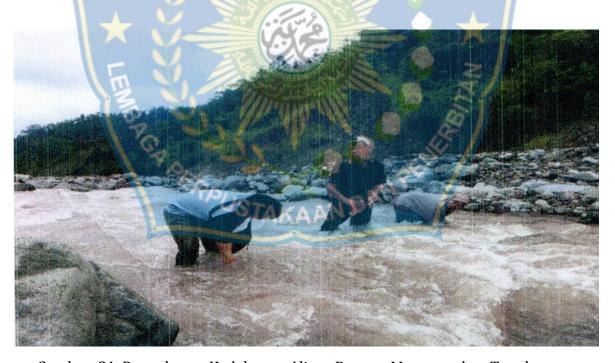
NIP 197804212000121002


DP/5 10.3/KL/BBLK - Mks, Rev 1, 15 Oktoberi 2012


Gambar 16. Lokasi Penelitian


Gambar 17. Loksi Penelitian

Gambar. 18 Kondisi Bangunan Sabo Dam 7.6



Gambar 19. Kondisi Bangunan Sabo Dam 7.6

Gambar 20. Pengukuran Kecepatan Aliran Dengan Menggunakan Currentmeter

Pada Bangunan Hulu Sabo Dam 7.6

Gambar 21. Pengukuran Kedalaman Aliran Dengan Menggunakan Tongkat

Currentmeter Psds Bangunan Hulu Sabo Dam 7.6

Gambar 22. Pencatatan Data Dari Lapangan

Gambar 23. Pengambilan Sampel Untuk Pengujian Kadar Lumpur

Gambar 24. Pengukuran Kecepatan Aliran Menggunakan Currentmeter

Gambar 25. Pengukuran Kecepatan Aliran Menggunakan Currentmeter